A HYBRID ALGORITHM FOR OPTIMIZING EIGENVALUES OF SYMMETRICAL DEFINITE PENCILS

被引:8
作者
HAEBERLY, JPA [1 ]
OVERTON, ML [1 ]
机构
[1] NYU,COURANT INST MATH SCI,DEPT COMP SCI,NEW YORK,NY 10012
关键词
NONSMOOTH OPTIMIZATION; GENERALIZED EIGENVALUE PROBLEM; MATRIX PENCIL; LYAPUNOV EQUATIONS;
D O I
10.1137/S0895479893244833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm is presented for the optimization of the maximum eigenvalue of a symmetric definite pencil depending affinely on a vector of parameters. The algorithm uses a hybrid approach, combining a scheme based on the method of centers, developed by Boyd and El Ghaoui [Linear Algebra Appl., 188 (1993), pp. 63-1121, with a new quadratically convergent local scheme. A convenient expression for the generalized gradient of the maximum eigenvalue of the pencil is also given, expressed in terms of a dual matrix. The algorithm computes the dual matrix that establishes the optimality of the computed solution.
引用
收藏
页码:1141 / 1156
页数:16
相关论文
共 18 条
[11]   ON THE LIMITED MEMORY BFGS METHOD FOR LARGE-SCALE OPTIMIZATION [J].
LIU, DC ;
NOCEDAL, J .
MATHEMATICAL PROGRAMMING, 1989, 45 (03) :503-528
[12]  
NESTEROV Y, 1991, INTERIOR POINT METHO
[13]  
Nesterov Y., 1994, INTERIOR POINT POLYN
[14]   LARGE-SCALE OPTIMIZATION OF EIGENVALUES [J].
Overton, Michael L. .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) :88-120
[15]   OPTIMALITY CONDITIONS AND DUALITY-THEORY FOR MINIMIZING SUMS OF THE LARGEST EIGENVALUES OF SYMMETRICAL MATRICES [J].
OVERTON, ML ;
WOMERSLEY, RS .
MATHEMATICAL PROGRAMMING, 1993, 62 (02) :321-357
[16]   ON MINIMIZING THE MAXIMUM EIGENVALUE OF A SYMMETRIC MATRIX [J].
OVERTON, ML .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (02) :256-268
[17]  
YE X, 1991, COMMUNCIATION
[18]  
IN PRESS SIAM J MATR