EARLY VISION - FROM COMPUTATIONAL STRUCTURE TO ALGORITHMS AND PARALLEL HARDWARE

被引:33
作者
POGGIO, T [1 ]
机构
[1] MIT,CTR BIOL INFORMAT PROC,CAMBRIDGE,MA 02139
来源
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING | 1985年 / 31卷 / 02期
关键词
COMPUTER PROGRAMMING - Algorithms - PATTERN RECOGNITION;
D O I
10.1016/S0734-189X(85)80003-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The author reviews a new theoretical framework that from the computational nature of early vision leads to algorithms for solving them and suggests a specific class of appropriate hardware. The common computational structure of many early vision problems is that they are mathematically ill-posed in the sense of Hadamard. Standard regularization analysis can be used to solve therm in terms of variational principles that enforce constraints derived from a physical analysis of the problem. Specific electrical and chemical networks for localizing edges and computing visual motion are derived. These results suggest that local circuits of neurons may exploit this unconventional model of computation.
引用
收藏
页码:139 / 155
页数:17
相关论文
共 71 条
[1]   INTERPRETING LINE DRAWINGS AS 3-DIMENSIONAL SURFACES [J].
BARROW, HG ;
TENENBAUM, JM .
ARTIFICIAL INTELLIGENCE, 1981, 17 (1-3) :75-116
[2]  
BENETT MVL, 1972, STRUCTURE FUNCTION S
[3]  
BERTERO M, 1982, PROBLEM NONBEN POSTI
[4]  
BRADY JM, 1984, IEEE T PATTERN ANAL, V288, P301
[5]  
BRADY JM, 1980, 1ST C AM ASS ART INT, P15
[6]  
Brayton R. K., 1964, Q APPL MATH, V22, P1, DOI DOI 10.1090/QAM/169746
[7]   INFORMATION TRANSMISSION IN A DIFFUSION-COUPLED OSCILLATORY CHEMICAL SYSTEM [J].
BUSSE, H ;
HESS, B .
NATURE, 1973, 244 (5413) :203-205
[8]  
CANNY JF, 1983, TR720 MIT ART INT LA
[9]  
Cole K. S., 1968, MEMBRANES IONS IMPUL
[10]  
EIGEN M, 1974, NEUROSCIENCES 3RD ST