ASYMPTOTIC EIGENVALUE DEGENERACY FOR A CLASS OF ONE-DIMENSIONAL FOKKER-PLANCK OPERATORS

被引:5
作者
ANGELETTI, A [1 ]
CASTAGNARI, C [1 ]
ZIRILLI, F [1 ]
机构
[1] RICE UNIV,DEPT MATH SCI,HOUSTON,TX 77001
关键词
D O I
10.1063/1.526607
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:678 / 691
页数:14
相关论文
共 17 条
[1]  
AFUFFIPENTINI F, UNPUB J OPTIM THEORY
[2]  
CHADRESEKHAR S, 1954, SELECTED PAPERS NOIS
[3]  
FLUGGE S, 1947, RECHENMETHODEN QUANT
[4]   RATE OF ASYMPTOTIC EIGENVALUE DEGENERACY [J].
HARRELL, EM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (01) :73-95
[5]   DOUBLE WELLS [J].
HARRELL, EM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (03) :239-261
[6]   EIGENVALUES AND EIGENFUNCTIONS OF A SPHERICALLY SYMMETRIC ANHARMONIC-OSCILLATOR [J].
ISAACSON, D ;
MARCHESIN, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (06) :659-670
[7]   SINGULAR PERTURBATIONS AND ASYMPTOTIC EIGENVALUE DEGENERACY [J].
ISAACSON, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (05) :531-551
[8]  
Kato T., 1966, PERTURBATION THEORY
[9]   EIGENVALUES OF THE FOKKER-PLANCK OPERATOR AND THE APPROACH TO EQUILIBRIUM FOR DIFFUSIONS IN POTENTIAL FIELDS [J].
MATKOWSKY, BJ ;
SCHUSS, Z .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 40 (02) :242-254
[10]  
Reed M., 1978, METHODS MODERN MATH