IS FREE-SURFACE HYDRODYNAMICS AN INTEGRABLE SYSTEM

被引:71
作者
DYACHENKO, AI [1 ]
ZAKHAROV, VE [1 ]
机构
[1] LD LANDAU THEORET PHYS INST, MOSCOW 117334, RUSSIA
关键词
D O I
10.1016/0375-9601(94)90067-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A strong argument is found in support of the integrability of free-surface hydrodynamics in the one-dimensional case. It is shown that the first term in the perturbation series in powers of nonlinearity is identically equal to zero, the consequences of which are discussed as well.
引用
收藏
页码:144 / 148
页数:5
相关论文
共 13 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   EVOLUTION OF A RANDOM INHOMOGENEOUS FIELD OF NON-LINEAR DEEP-WATER GRAVITY-WAVES [J].
CRAWFORD, DR ;
SAFFMAN, PG ;
YUEN, HC .
WAVE MOTION, 1980, 2 (01) :1-16
[3]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[4]   HIGHER-ORDER WATER-WAVE EQUATION AND METHOD FOR SOLVING IT [J].
KAUP, DJ .
PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (02) :396-408
[5]  
Krasitskii V. P., 1990, Soviet Physics - JETP, V71, P921
[6]  
KUZNETSOV EA, IN PRESS PHYS REV E
[7]  
SHEININ D, 1994, P ONR OCEAN WAVES WO
[8]  
WOLFRAM VP, 1988, MATHEMATICA
[9]  
Zakharov V.E., 1968, JAPPL MECH TECH PHYS, V9, P190, DOI 10.1007/BF00913182
[10]  
Zakharov V. E., 1974, ZHETF, V38, P108