ELEMENTARY MOVES AND ERGODICITY IN D-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY

被引:55
作者
GROSS, M [1 ]
VARSTED, S [1 ]
机构
[1] NIELS BOHR INST,DK-2100 COPENHAGEN 0,DENMARK
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(92)90012-Z
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We define d + 1 types of topology-preserving, elementary, simplicial transformations in d dimensions and show that they are equivalent to the simple moves defined by Alexander for manifolds in d less-than-or-equal-to 4 dimensions. (Only if we make an assumption involving (d - 2)-dimensional spheres can this result be extended to d > 4 dimensions.) Thus our result implies that these "(k, l) moves" (with k + l = d + 2), presently being used in numerical simulations of two- and three-dimensional simplicial quantum gravity, can be used to ergodically span all "combinatorially equivalent" manifolds in d less-than-or-equal-to 4 dimensions.
引用
收藏
页码:367 / 380
页数:14
相关论文
共 21 条
[1]   3-DIMENSIONAL QUANTUM-GRAVITY AS DYNAMIC TRIANGULATION [J].
AGISHTEIN, ME ;
MIGDAL, AA .
MODERN PHYSICS LETTERS A, 1991, 6 (20) :1863-1884
[2]   The combinatorial theory of complexes [J].
Alexander, JW .
ANNALS OF MATHEMATICS, 1930, 31 :292-320
[3]  
ALVAREZ E, CERNTH625791 PREPR
[4]  
AMBJORN J, NBIHE9072 NIELS BOHR
[5]  
AMBJORN J, NBIHE9117 NIELS BOHR
[6]  
[Anonymous], 1987, ENCY MATH
[7]   ANALYTICAL AND NUMERICAL STUDY OF A MODEL OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1986, 275 (04) :641-686
[8]  
BOULATOV DV, COMMUNICATION
[9]   HAUPTVERMUTUNG FOR 3-COMPLEXES [J].
BROWN, EM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 144 (OCT) :173-&
[10]  
Donaldson S. K, 1990, OXFORD MATH MONOGRAP