ELEMENTARY MOVES AND ERGODICITY IN D-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY

被引:55
作者
GROSS, M [1 ]
VARSTED, S [1 ]
机构
[1] NIELS BOHR INST,DK-2100 COPENHAGEN 0,DENMARK
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(92)90012-Z
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We define d + 1 types of topology-preserving, elementary, simplicial transformations in d dimensions and show that they are equivalent to the simple moves defined by Alexander for manifolds in d less-than-or-equal-to 4 dimensions. (Only if we make an assumption involving (d - 2)-dimensional spheres can this result be extended to d > 4 dimensions.) Thus our result implies that these "(k, l) moves" (with k + l = d + 2), presently being used in numerical simulations of two- and three-dimensional simplicial quantum gravity, can be used to ergodically span all "combinatorially equivalent" manifolds in d less-than-or-equal-to 4 dimensions.
引用
收藏
页码:367 / 380
页数:14
相关论文
共 21 条
[11]  
Gross M., 1991, Nuclear Physics B, Proceedings Supplements, V20, P724, DOI 10.1016/0920-5632(91)91008-8
[12]  
HAMBER HW, UCI9060 IRV PREPR
[13]   ON TRIANGULATION OF MANIFOLDS AND HAUPTVERMUTUNG [J].
KIRBY, RC ;
SIEBENMA.LC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (04) :742-&
[14]   2 COMPLEXES WHICH ARE HOMEOMORPHIC BUT COMBINATORIALLY DISTINCT [J].
MILNOR, J .
ANNALS OF MATHEMATICS, 1961, 74 (03) :575-&
[15]  
MOISE E.E., 1977, GEOMETRIC TOPOLOGY D
[16]  
Munkres J.R., 1966, LECT GIVEN MASSACHUS, V1961, pxi+112
[17]   Combinatory topology of convex regions [J].
Newman, MHA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1930, 16 :240-242
[18]  
NEWMAN MHA, 1929, P LOND MATH SOC, V30, P339
[19]  
Papakyriakopoulos C., 1943, B SOC MATH GRECE, V22, P1
[20]  
SASAKURA N, KUNS1039HETH9015 KYO