OPTIMAL PROPERTIES OF THE BECHHOFER-KULKARNI BERNOULLI SELECTION PROCEDURE

被引:9
作者
KULKARNI, RV [1 ]
JENNISON, C [1 ]
机构
[1] UNIV BATH,SCH MATH,BATH BA2 7AY,AVON,ENGLAND
关键词
D O I
10.1214/aos/1176349857
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:298 / 314
页数:17
相关论文
共 12 条
[1]   A MONTE-CARLO STUDY OF THE PERFORMANCE OF A CLOSED ADAPTIVE SEQUENTIAL PROCEDURE FOR SELECTING THE BEST BERNOULLI POPULATION [J].
BECHHOFER, RE ;
FRISARDI, T .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1983, 18 (2-3) :179-213
[2]  
BECHHOFER RE, 1982, COMMUN STAT SEQUENT, V1, P315
[3]  
BECHHOFER RE, 1982, 3RD P PURD S STAT DE, P61
[4]   INVERSE STOPPING RULE FOR PLAY-WINNER SAMPLING [J].
HOEL, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1972, 67 (337) :148-&
[6]  
JENNISON C, 1984, COMM STATIST C SEQUE, V3, P39
[7]  
JENNISON C, 1984, DESIGN EXPT RANKING, P113
[8]   MULTI-ARMED BANDITS WITH DISCOUNT FACTOR NEAR ONE - THE BERNOULLI CASE [J].
KELLY, FP .
ANNALS OF STATISTICS, 1981, 9 (05) :987-1001
[9]  
KULKARNI RV, 1985, UNPUB J STATIST PLAN
[10]  
KULKARNI RV, 1981, THESIS CORNELL U ITH