INERTIAL MANIFOLDS AND SLOW MANIFOLDS

被引:11
作者
DEBUSSCHE, A
TEMAM, R
机构
[1] The Institute for Applied Mathematics, Scientific Computing Indiana University, Bloomington
[2] Laboritoire d'Analyse Numérique Université Paris-Sud, 91405 ORSAY CEDEX
关键词
D O I
10.1016/0893-9659(91)90059-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of slow manifold has been introduced in meteorology and is broadly used for short term weather forecast and data assimilation (see e.g., [1,2]). Our object in this article is to present a mathematical theory of slow manifolds, using the concept of inertial manifold recently studied in dynamical systems theory. We show in fact that a slow manifold is a special type of inertial manifold. Our study relies on a new construction of inertial manifolds for evolution equations of a more general type than those previously studied.
引用
收藏
页码:73 / 76
页数:4
相关论文
共 13 条
[1]  
Daley, Normal mode initialization, Rev. of Geoph. and Space Physics, 19, pp. 450-468, (1981)
[2]  
Tribbia, Nonlinear Initialization on an Equatorial Beta-Plane, Monthly Weather Review, 105, pp. 704-713, (1979)
[3]  
Tribbia, On Variational Normal Mode Initialization, Monthly Weather Review, 110, pp. 455-470, (1982)
[4]  
Foias, Sell, Temam, Variétés inertielles des équations différentielles dissipatives, C.R. Acad. Sci. Paris, Série I, 301 t., pp. 139-142, (1985)
[5]  
Foias, Sell, Temam, Inertial manifolds for nonlinear evolutionary equations, Journal of Differential Equations, 13, pp. 309-353, (1988)
[6]  
Constantin, Foias, Nicolaenko, Temam, Nouveaux résultats sur les variétés inertielles pour les équations différentielles dissipatives, C.R. Acad. Sci. Paris, Série I, 302 t., pp. 375-378, (1986)
[7]  
Constantin, Foias, Nicolaenko, Temam, Integral and inertial manifolds for dissipative partial differential equations, (1988)
[8]  
Mallet-Paret, Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, Journal of the American Mathematical Society, 1, 4, pp. 805-866, (1988)
[9]  
Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, (1988)
[10]  
Leith, Nonlinear Normal Mode Initialization and Quasi-Geostrophic Theory, Journal of the Atmospheric Sciences, 37, pp. 955-958, (1980)