Mechanisms of PTH-induced rise in cytosolic calcium in adult rat hepatocytes. Am. J. Physiol. 267 (Gastrointest. Liver Physiol. 30): G754-G763, 1994.-Available data indicate that the Liver is a target organ for parathyroid hormone (PTH) and that this effect is most likely mediated by PTH-induced calcium entry into hepatocytes. The present study examined the effects of both PTH-(1-84) and its amino-terminal fragment [PTH-(1-34)] on cytosolic calcium concentration ([Ca2+](i)) of hepatocytes and explored the cellular pathways that mediate this potential action of PTH. Both moieties of PTH produced a dose-dependent rise in [Ca2+](i), but the effect of PTH-(1-84) was greater(P < 0.01) than an equimolar amount of PTH-(1-34). This effect required calcium in the medium and was totally [PTH-(1-34)] or partially [PTH-(1-84)] blocked by PTH antagonist ([Nle(8,18),Tyr(34)]bPTH-(7-34)-NH2 and by verapamil or nifedipine. Sodium or chloride channel blockers did not modify this effect. 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C, dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP), and G protein activator also produced a dose-dependent rise in [Ca2+](i). Staurosporine abolished the effect of TPA, and both staurosporine and calphostin C partially inhibited the effect of PTH. Staurosporine and verapamil together produced greater inhibition of PTH action than each alone. Rp-cAMP, a competitive inhibitor of cAMP binding to the R subunit of protein kinase A, and N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide (H-89), a protein kinase A inhibitor, blocked the effect of both DBcAMP and PTH, but the effect of these agents was greater (P < 0.01) on DBcAMP action. G protein inhibitor and pertussis toxin partially blocked the action of PTH. The data indicate that 1) PTH increases [Ca2+](i) of hepatocytes; 2) this action of the hormone is receptor mediated; 3) the predominant pathway for this PTH action is the stimulation of a G protein-adenylate cyclase-cAMP system, which then leads to stimulation of a calcium transport system inhibitable by verapamil or nifedipine or activation of L-type calcium channels; 4) activation of protein kinase C is also involved; and 5) the PTH-induced rise in [Ca2+](i) is due, in major parts, to movement of extracellular calcium into the cell.