THE FREE-ENERGY OF MAXWELL-VLASOV EQUILIBRIA

被引:65
作者
MORRISON, PJ
PFIRSCH, D
机构
[1] UNIV TEXAS,INST FUSION STUDIES,AUSTIN,TX 78712
[2] EURATOM,MAX PLANCK INST PLASMAPHYS,W-8046 GARCHING,GERMANY
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1990年 / 2卷 / 06期
关键词
D O I
10.1063/1.859246
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A previously derived expression [Phys. Rev. A 40, 3898 (1989)] for the energy of arbitrary perturbations about arbitrary Vlasov-Maxwell equilibria is transformed into a very compact form. The new form is also obtained by a canonical transformation method for solving Vlasov's equation, which is based on Lie group theory. This method is simpler than the one used before and provides better physical insight. Finally, a procedure is presented for determining the existence of negative-energy modes. In this context the question of why there is an accessibility constraint for the particles, but not for the fields, is discussed. © 1990 American Institute of Physics.
引用
收藏
页码:1105 / 1113
页数:9
相关论文
共 25 条
[1]   NONLINEAR INSTABILITIES IN BEAM-PLASMA SYSTEMS [J].
AAMODT, RE ;
SLOAN, ML .
PHYSICAL REVIEW LETTERS, 1967, 19 (21) :1227-&
[2]   RELATION OF WAVE ENERGY AND MOMENTUM WITH THE PLASMA DISPERSION-RELATION IN AN INHOMOGENEOUS-PLASMA [J].
BERK, HL ;
PFIRSCH, D .
PHYSICS OF FLUIDS, 1988, 31 (06) :1532-1543
[3]  
Brillouin L, 1960, WAVE PROPAGATION GRO, DOI [10.1063/1.3057398, DOI 10.1063/1.3057398]
[4]  
Cherry T. M., 1925, T CAMBRIDGE PHILOS S, V23, P199
[5]  
COPPI B, 1968, ANN PHYS, V55, P248
[6]  
COPPI B, 1968, ANN PHYS, V55, P207
[7]  
Deprit A., 1969, Celestial Mechanics, V1, P12, DOI 10.1007/BF01230629
[8]   RENORMALIZED CANONICAL PERTURBATION-THEORY FOR STOCHASTIC PROPAGATORS [J].
DEWAR, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (12) :2043-2057
[9]  
DIKASOV VM, 1966, ZH EKSP TEOR FIZ+, V21, P608
[10]  
GARDNER CS, 1960, PHYS FLUIDS, V6, P839