GEOMETRICAL DIMENSION VERSUS SMOOTHNESS

被引:33
作者
DELIU, A
JAWERTH, B
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
[2] UNIV S CAROLINA,DEPT MATH,COLUMBIA,SC 29208
关键词
FRACTAL DIMENSION; WAVELETS; BESOV SPACE; SMOOTHNESS SPACE;
D O I
10.1007/BF01238270
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the relation between geometric dimension and smoothness, and give a precise characterization of the fractal dimension of the graph of a function in terms of smoothness classes of functions. We also express the fractal dimension in terms of different classical oscillation measures and in terms of wavelet expansions.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 13 条
[1]  
Barnsley MF., 2014, FRACTALS EVERYWHERE
[2]  
Bergh Joran, 1974, BOLL UNIONE MAT ITAL, V10, P632
[3]  
Boas R.P., 1954, ENTIRE FUNCTIONS
[4]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[5]  
DELIU A, IN PRESS LOCAL SMOOT
[6]  
FALCONER K. J., 1985, CAMBRIDGE TRACTS MAT, V85
[7]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[8]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[9]  
MARCINKIEWICZ J, 1934, COMPT REND SOC SCI W, V26, P71
[10]  
Peetre, 1976, NEW THOUGHTS BESOV S