MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS

被引:242
作者
BISCHOF, H [1 ]
SCHNEIDER, W [1 ]
PINZ, AJ [1 ]
机构
[1] UNIV WIEN, INST SURVEYING & REMOTE SENSING, A-1190 VIENNA, AUSTRIA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1992年 / 30卷 / 03期
关键词
D O I
10.1109/36.142926
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recent progress in neural network research has demonstrated the usefulness of neural networks in a variety of areas. In this work we report the application of three-layer back-propagation networks for classification of Landsat TM data on a pixel-by-pixel basis. The results are compared to Gaussian maximum likelihood classification. First, we show that the neural network is able to perform better than the maximum likelihood classifier. Secondly, in an extension of the basic network architecture we show that textural information can be integrated into the neural network classifier without the explicit definition of a texture measure. Finally, we examine the use of neural networks for postclassificational smoothing.
引用
收藏
页码:482 / 490
页数:9
相关论文
共 35 条
  • [1] ANSHELEVICH VV, 1989, BIOL CYBERN, V61, P125, DOI 10.1007/BF00204596
  • [2] BARTL R, 1990, IMAGE ACQUISITION RE, P51
  • [3] NEURAL NETWORK APPROACHES VERSUS STATISTICAL-METHODS IN CLASSIFICATION OF MULTISOURCE REMOTE-SENSING DATA
    BENEDIKTSSON, JA
    SWAIN, PH
    ERSOY, OK
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1990, 28 (04): : 540 - 552
  • [4] BISCHOF H, 1990, IMAGE ACQUISITION RE, P37
  • [5] BISCHOF H, 1991, IN PRESS 11TH P EARS, P14
  • [6] BISCHOF H, 1991, KONNEKTIONISMUS BEIT, V3, P1
  • [7] BISCHOF H, 1990, KONNEKTIONISMUS ARTI, P112
  • [8] DECATUR SE, 1989, P INT JOINT C NEUR N, V1, P283
  • [9] Duda R. O., 1973, PATTERN CLASSIFICATI, V3
  • [10] LEARNING, INVARIANCE, AND GENERALIZATION IN HIGH-ORDER NEURAL NETWORKS
    GILES, CL
    MAXWELL, T
    [J]. APPLIED OPTICS, 1987, 26 (23): : 4972 - 4978