MCKEAN-VLASOV ITO-SKOROHOD EQUATIONS, AND NONLINEAR DIFFUSIONS WITH DISCRETE JUMP SETS

被引:72
作者
GRAHAM, C [1 ]
机构
[1] ECOLE POLYTECH,CNRS,CAMP,URA 756,F-91128 PALAISEAU,FRANCE
关键词
POISSON POINT PROCESS; MCKEAN MEASURE; FIXED-POINT METHOD; PROPAGATION OF CHAOS;
D O I
10.1016/0304-4149(92)90138-G
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a 'nonlinear' McKean-Vlasov Ito-Skorohod SDE, and develop a L(t) contraction scheme so as to get good results on the non-compensated jumps. We prove existence and uniqueness results under natural Lipachitz assumptions. We show that a wide class of nonlinear martingale problems, giving most diffusions with discrete jump sets, can be represented by SDEs satisfying our L1 assumptions, but not more classical L2 ones. We use this on a probabilistic model for a chromatographic tube. We finish by a propagation of chaos result on sample-paths.
引用
收藏
页码:69 / 82
页数:14
相关论文
共 14 条
[1]  
CERCIGNIANI C, 1988, BOLTZMANN EQUATION I
[2]   REPRESENTATION OF MULTIVARIATE POINT PROCESSES USING POISSON-PROCESS [J].
ELKAROUI, N ;
LEPELTIER, JP .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (02) :111-133
[3]   NONLINEAR LIMIT FOR A SYSTEM OF DIFFUSING PARTICLES WHICH ALTERNATE BETWEEN 2 STATES [J].
GRAHAM, C .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 22 (01) :75-90
[4]  
GRAHAM C, IN PRESS ANN I H POI
[5]  
Ikeda N., 1981, STOCHASTIC DIFFERENT
[6]   WEAK-CONVERGENCE OF SEQUENCES OF SEMIMARTINGALES WITH APPLICATIONS TO MULTITYPE BRANCHING-PROCESSES [J].
JOFFE, A ;
METIVIER, M .
ADVANCES IN APPLIED PROBABILITY, 1986, 18 (01) :20-65
[7]  
LEPELTIER JP, 1976, ANN I H POINCARE B, V12, P43
[8]  
Metivier M, 1982, GRUYTER STUDIES MATH, V2
[9]  
Skorohod A. V., 1965, STUDIES THEORY RANDO