PROPAGATION OF CHAOS FOR A FULLY CONNECTED LOSS NETWORK WITH ALTERNATE ROUTING

被引:25
作者
GRAHAM, C [1 ]
MELEARD, S [1 ]
机构
[1] UNIV PARIS 06,PROBABIL LAB 224,PARIS,FRANCE
关键词
JUMP PROCESSES; RANDOM GRAPHS AND TREES; COUPLINGS; PROPAGATION OF CHAOS;
D O I
10.1016/0304-4149(93)90043-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a stochastic loss network of switched circuits with alternate routing. The processes of interest will be the loads of the links, forming a strongly interacting system which is neither exchangeable nor Markovian. We consider interaction graphs representing the past history of a collection of links and prove their convergence to a limit tree, using the notion of chain reactions. Thus we prove a propagation of chaos result in variation norm for the laws of the whole sample paths, for general initial conditions, and in the i.i.d. case we have speeds of convergence.
引用
收藏
页码:159 / 180
页数:22
相关论文
共 13 条
[1]  
Anantharam V., 1991, ANN APPL PROBAB, V1, P481
[2]  
CERCIGNIANI C, 1988, BOLTZMANN EQUATION I
[3]   A GEOMETRIC RATE OF CONVERGENCE TO THE EQUILIBRIUM FOR BOLTZMANN PROCESSES WITH MULTIPLE PARTICLE INTERACTIONS [J].
CHAUVIN, B ;
GIROUX, G .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (03) :510-520
[4]  
Crametz J.P., 1991, ANN APPL PROBAB, V1, P436
[5]  
GRAHAM C, 1992, ANN I H POINCARE, V28
[6]  
IBBENS RJ, 1990, DISORDER PHYSICAL SY, P113
[7]   SMOLUCHOWSKIS THEORY OF COAGULATION IN COLLOIDS HOLDS RIGOROUSLY IN THE BOLTZMANN-GRAD-LIMIT [J].
LANG, R ;
XANH, NX .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 54 (03) :227-280
[8]  
MARBUKH VV, 1984, SIMULATION BEHAVIOUR, P1601
[9]  
NEVEU J, 1986, ANN I H POINCARE-PR, V22, P199
[10]   CENTRAL LIMIT-THEOREM FOR A SYSTEM OF MARKOVIAN PARTICLES WITH MEAN FIELD-INTERACTIONS [J].
SHIGA, T ;
TANAKA, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (03) :439-459