AN EXACT SOLUTION OF THE FRAGMENTATION EQUATION

被引:29
作者
WILLIAMS, MMR
机构
[1] Nuclear Engineering Department, University of Michigan, Ann Arbor, MI
关键词
Aerosols;
D O I
10.1080/02786829008959368
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The accuracy of the self-similarity assumption employed in the study of the grinding equation is examined in detail. This is made possible by obtaining an exact solution for any homogeneous breakup functionthereby enabling the asymptotic limit as time proceeds to be examined carefully. For the Randolph-Ranjan model of breakupwe have obtained some explicit results and these have been employed to highlight the limitations of current self-similar solutions. In particularwe note that use of a self-similar solution which depends only on the zeroth and first moment of the distribution cannot give any detailed information on the higher moments. Neverthelessat times very soon after the start of grindingself-similarity does lead to useful and practical asymptotic results for size distributionssince it appears that higher moments are then of less importance. Thus the reason for the success of similarity is explained and the rate of approach to this condition is given. We have also introduced a new model of breakup which assumes that the minimum particle size in a given breakup process is always a fixed fraction of the initial size. This has the advantage of eliminating the divergence of the total number of particles produced per grinding action while still allowing the equation to be dealt with analytically. Finallywe discuss some steady state grinding distributions that arise from the new model. © 1990 Elsevier Science Publishing Co., Inc.
引用
收藏
页码:538 / 546
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 1996, TABLES INTEGRALS SER
[3]   PSEUDO-SIMILARITY SOLUTION TO INTEGRO-DIFFERENTIAL EQUATION OF BATCH GRINDING [J].
GUPTA, VK ;
KAPUR, PC .
POWDER TECHNOLOGY, 1975, 12 (02) :175-178
[4]   SELF-PRESERVING SIZE SPECTRA OF COMMINUTED PARTICLES [J].
KAPUR, PC .
CHEMICAL ENGINEERING SCIENCE, 1972, 27 (02) :425-&
[5]   COMPARISON OF COMMINUTION DATA WITH ANALYTICAL SOLUTIONS OF THE FRAGMENTATION EQUATION [J].
PETERSON, TW ;
SCOTTO, MV ;
SAROFIM, AF .
POWDER TECHNOLOGY, 1985, 45 (01) :87-93
[6]  
RANDOLPH AD, 1977, INT J MINER PROCESS, V4, P99
[7]   VARIATION OF BREAKAGE PARAMETERS WITH BALL AND POWDER LOADING IN DRY BALL MILLING [J].
SHOJI, K ;
LOHRASB, S ;
AUSTIN, LG .
POWDER TECHNOLOGY, 1980, 25 (01) :109-114
[8]  
WALLER I, 1968, ARK FYS, V37, P569
[9]   2 INTEGRO-DIFFERENTIAL EQUATIONS ARISING IN PARTICLE-TRANSPORT THEORY [J].
WILLIAMS, MMR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (02) :675-688
[10]   ROLE OF THE BOLTZMANN TRANSPORT-EQUATION IN RADIATION-DAMAGE CALCULATIONS [J].
WILLIAMS, MMR .
PROGRESS IN NUCLEAR ENERGY, 1979, 3 (01) :1-65