ROBIN FUNCTIONS AND ENERGY FUNCTIONALS OF MULTIPLY CONNECTED DOMAINS

被引:21
作者
DUREN, PL [1 ]
SCHIFFER, MM [1 ]
机构
[1] STANFORD UNIV,STANFORD,CA 94305
关键词
D O I
10.2140/pjm.1991.148.251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Robin function of a planar domain is a generalization of Green's function. It can be used to represent the solutions of mixed boundary-value problems for harmonic functions. Here it is combined with a variational method to solve certain extremal problems for the energy functional of a multiply connected domain. Some deeper properties of the Robin function are then explored. An allied system of conformal invariants called the Robin matrix is introduced and is compared with the classical Riemann matrix of a finitely connected domain.
引用
收藏
页码:251 / 273
页数:23
相关论文
共 12 条
[1]  
Bergman S., 1953, KERNEL FUNCTIONS ELL
[2]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[3]  
DUREN P. L., 1983, GRADUATE TEXTS MATH
[4]   GOLUZIN INEQUALITIES AND MINIMUM ENERGY FOR MAPPINGS ONTO NONOVERLAPPING REGIONS [J].
DUREN, PL ;
SCHIFFER, MM .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1990, 15 (01) :133-150
[5]  
Frank P., 1930, DIFFERENTIAL INTEGRA
[6]  
GOLUZIN GM, 1952, GEOMETRIC THEORY FUN
[7]  
Hille E., 1987, ANAL FUNCTION THEORY, VII
[9]  
Nehari Z., 1975, CONFORMAL MAPPING
[10]   HADAMARDS FORMULA AND VARIATION OF DOMAIN-FUNCTIONS [J].
SCHIFFER, M .
AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (03) :417-448