VARIABLE-STEP BOUNDARY-VALUE METHODS BASED ON REVERSE ADAMS SCHEMES AND THEIR GRID REDISTRIBUTION

被引:10
作者
AMODIO, P
GOLIK, WL
MAZZIA, F
机构
[1] UNIV MISSOURI,DEPT MATH & COMP SCI,ST LOUIS,MO 63121
[2] UNIV BARI,DIPARTIMENTO MATEMAT,I-70125 BARI,ITALY
关键词
INITIAL VALUE PROBLEMS; BOUNDARY VALUE METHODS; NONUNIFORM MESH; IRREGULAR GRIDS; GRID REDISTRIBUTION; ORDINARY DIFFERENTIAL EQUATIONS;
D O I
10.1016/0168-9274(95)00044-U
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The variable-step boundary value methods based on reverse k-step Adams schemes are defined for the solution of initial value problems. The paper discusses attainable convergence orders, conditioning of resulting discretization matrices and introduces a grid redistribution strategy based on equidistribution of the local truncation error. An adaptive algorithm is tested on several linear and nonlinear examples and the results strongly support the theory. The method is suitable for a parallel solution of stiff initial value problems.
引用
收藏
页码:5 / 21
页数:17
相关论文
共 18 条
[1]   BOUNDARY-VALUE METHODS BASED ON ADAMS-TYPE METHODS [J].
AMODIO, P ;
MAZZIA, F .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :23-35
[2]   STABILITY OF SOME BOUNDARY-VALUE METHODS FOR THE SOLUTION OF INITIAL-VALUE PROBLEMS [J].
AMODIO, P ;
MAZZIA, F ;
TRIGIANTE, D .
BIT NUMERICAL MATHEMATICS, 1993, 33 (03) :434-451
[3]  
AMODIO P, 1993, 1293 U BAR DIP MAT R
[4]  
ASCHER UM, 1988, SERIES COMPUTATIONAL
[5]  
AXELSSON AOH, 1985, MATH COMPUT, V45, P153, DOI 10.1090/S0025-5718-1985-0790649-9
[6]   STABILITY PROPERTIES OF SOME BOUNDARY-VALUE METHODS [J].
BRUGNANO, L ;
TRIGIANTE, D .
APPLIED NUMERICAL MATHEMATICS, 1993, 13 (04) :291-304
[7]   A PARALLEL PRECONDITIONING TECHNIQUE FOR BOUNDARY-VALUE METHODS [J].
BRUGNANO, L ;
TRIGIANTE, D .
APPLIED NUMERICAL MATHEMATICS, 1993, 13 (04) :277-290
[8]  
Cash J. R, 1979, STABLE RECURSIONS
[9]   ORDER-INCREASING GRID ADAPTION FOR RUNGE-KUTTA METHODS APPLIED TO 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
GOLIK, WL .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (04) :59-75
[10]  
Hairer E., 1991, SOLVING ORDINARY DIF