ELECTRON-TRANSFER PROPERTIES OF THE R2 PROTEIN OF RIBONUCLEOTIDE REDUCTASE FROM ESCHERICHIA-COLI

被引:49
作者
SILVA, KE [1 ]
ELGREN, TE [1 ]
QUE, L [1 ]
STANKOVICH, MT [1 ]
机构
[1] UNIV MINNESOTA, DEPT CHEM, MINNEAPOLIS, MN 55455 USA
关键词
D O I
10.1021/bi00043a014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The enzyme ribonucleotide reductase from Escherichia coli consists of two proteins, Ri and R2. The active R2 protein contains two dinuclear iron centers and the catalytically essential tyrosyl radical. We have explored the redox properties of the tyrosyl radical and estimate an apparent redox potential of +1000 +/-100 mV (vs SHE) on the basis of the behavior of numerous mediators. The inability of most of these mediators to equilibrate with the tyrosyl radical supports the notion that the radical exists in an extremely protected hydrophobic pocket that prevents most radical scavengers from interacting with the radical, resulting in its unusual stability. The formal midpoint potential of the diiron clusters of the R2 protein was determined to be -115 +/- 2 mV at pH 7.6 and 4 degrees C. This reduction is a two-electron transfer process, making the R2 protein the first of the nonheme diiron proteins not to stabilize a mixed valence intermediate at ambient temperature. The formal midpoint potential of the dinuclear iron centers is pH dependent, exhibiting a 30 mV/pH unit variance, which indicates that one proton is accepted from the solvent per two electrons transferred to the dinuclear iron center upon reduction. The midpoint potential of the site-directed mutant Y122F R2 protein was also investigated under the same conditions, and this midpoint potential was determined to be -178 mV, providing the first direct evidence that the presence of the Y122 residue modulates the redox properties of the diiron clusters, The redox potentials of both the wild type and Y122F proteins experience cathodic shifts when measured in the presence of azide or the R1 protein. For the latter, the midpoint potentials were determined to be -226 mV for the wild type protein and -281 mV for the Y122F mutant protein, representing a negative shift of over 100 mV for both proteins, These results indicate that the presence of the Y122 residue does not influence the effect of R1 binding, that the Pi protein preferentially binds the oxidized form of R2, and that the binding of R1 acts as a regulatory control mechanism to prevent unnecessary turnover of the dinuclear iron centers.
引用
收藏
页码:14093 / 14103
页数:11
相关论文
共 53 条
[1]   UNUSUAL CLUSTERING OF CARBOXYL SIDE-CHAINS IN THE CORE OF IRON-FREE RIBONUCLEOTIDE REDUCTASE [J].
ABERG, A ;
NORDLUND, P ;
EKLUND, H .
NATURE, 1993, 361 (6409) :276-278
[2]  
ABERG A, 1993, THESIS U STOCKHOLM S
[3]   REDUCTION POTENTIALS OF VARIOUS HEMERYTHRIN OXIDATION-STATES [J].
ARMSTRONG, FA ;
HARRINGTON, PC ;
WILKINS, RG .
JOURNAL OF INORGANIC BIOCHEMISTRY, 1983, 18 (01) :83-91
[4]  
ATKIN CL, 1973, J BIOL CHEM, V248, P7464
[5]   MECHANISM OF ASSEMBLY OF THE TYROSYL RADICAL-DIIRON(III) COFACTOR OF ESCHERICHIA-COLI RIBONUCLEOTIDE REDUCTASE .2. KINETICS OF THE EXCESS FE2+ REACTION BY OPTICAL, EPR, AND MOSSBAUER SPECTROSCOPIES [J].
BOLLINGER, JM ;
TONG, WH ;
RAVI, N ;
HUYNH, BH ;
EDMONDSON, DE ;
STUBBE, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (18) :8015-8023
[6]   MECHANISM OF ASSEMBLY OF THE TYROSYL RADICAL DINUCLEAR IRON CLUSTER COFACTOR OF RIBONUCLEOTIDE REDUCTASE [J].
BOLLINGER, JM ;
EDMONDSON, DE ;
HUYNH, BH ;
FILLEY, J ;
NORTON, JR ;
STUBBE, J .
SCIENCE, 1991, 253 (5017) :292-298
[7]   MECHANISM OF ASSEMBLY OF THE TYROSYL RADICAL-DIIRON(III) COFACTOR OF ESCHERICHIA-COLI RIBONUCLEOTIDE REDUCTASE .3. KINETICS OF THE LIMITING FE2+ REACTION BY OPTICAL, EPR, AND MOSSBAUER SPECTROSCOPIES [J].
BOLLINGER, JM ;
TONG, WH ;
RAVI, N ;
HUYNH, BH ;
EDMONDSON, DE ;
STUBBE, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (18) :8024-8032
[8]  
Clark W. M., 1960, OXIDATION REDUCTION
[9]   SITE-DIRECTED MUTAGENESIS AND DELETION OF THE CARBOXYL TERMINUS OF ESCHERICHIA-COLI RIBONUCLEOTIDE REDUCTASE PROTEIN R2 - EFFECTS ON CATALYTIC ACTIVITY AND SUBUNIT INTERACTION [J].
CLIMENT, I ;
SJOBERG, BM ;
HUANG, CY .
BIOCHEMISTRY, 1992, 31 (20) :4801-4807
[10]  
COVES J, 1993, J BIOL CHEM, V268, P18604