ON THE DISCRETIZATION OF NEWTON-LIKE METHODS

被引:5
作者
ARGYROS, IK
机构
[1] Department of Mathematics, Cameron University, Lawton
关键词
BANACH SPACE; NEWTON-LIKE METHODS; OPERATOR EQUATION;
D O I
10.1080/00207169408804301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that when Newton-like methods are applied to operator equations in Banach space as well as to finite-dimensional discretizations of these equations then there is at most a difference of one between the number of steps required by the two iterations to converge within a given tolerance.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 11 条
[1]   A MESH-INDEPENDENCE PRINCIPLE FOR OPERATOR-EQUATIONS AND THEIR DISCRETIZATIONS [J].
ALLGOWER, EL ;
BOHMER, K ;
POTRA, FA ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (01) :160-169
[2]  
ARGYROS IK, 1987, B ASTR MATH SOC, V37, P131
[3]  
Dennis J. E., 1971, NONLINEAR FUNCTIONAL
[4]  
Kantorovich L. V, 1964, FUNCTIONAL ANAL
[5]  
Kornstaedt H.J., 1975, AEQUATIONES MATH, V13, P21
[6]  
McCormick S. F., 1978, LECT NOTES MATH, V674, P15
[7]   NONDISCRETE MATHEMATICAL INDUCTION AND ITERATIVE EXISTENCE PROOFS [J].
PTAK, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) :223-238
[8]  
Rheinboldt W.C., 1978, MATH MODELS NUMERICA, V3, P129
[9]  
Schmidt J.W., 1978, PERIOD MATH HUNGAR, V9, P241, DOI [10.1007/BF02018090, DOI 10.1007/BF02018090]
[10]  
VAINIKKO GM, 1967, USSR COMP MATH MATH, V4, P723