FARADAY INSTABILITY - LINEAR-ANALYSIS FOR VISCOUS FLUIDS

被引:53
作者
BEYER, J
FRIEDRICH, R
机构
[1] Institut für Theoretische Physik und Synergetik, Universität Stuttgart, 70550 Stuttgart
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 02期
关键词
D O I
10.1103/PhysRevE.51.1162
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a linear stability analysis of parametrically excited surface waves for the case of viscous fluids. We show that the inclusion of viscosity leads to an extension of Mathieu's differential equation, which is valid for the case of inviscid fluids, in the form of an integrodifferential equation. We numerically solve this equation for the case of a single as well as a double frequency excitation. © 1995 The American Physical Society.
引用
收藏
页码:1162 / 1168
页数:7
相关论文
共 8 条
  • [1] THE STABILITY OF THE PLANE FREE SURFACE OF A LIQUID IN VERTICAL PERIODIC MOTION
    BENJAMIN, TB
    URSELL, F
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 225 (1163): : 505 - 515
  • [2] ORDERED CAPILLARY-WAVE STATES - QUASI-CRYSTALS, HEXAGONS, AND RADIAL WAVES
    CHRISTIANSEN, B
    ALSTROM, P
    LEVINSEN, MT
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (14) : 2157 - 2160
  • [3] EDWARDS WS, 1993, PHYS REV E, V47, P1623
  • [4] EISENMENGER W, 1959, ACUSTICA, V9, P327
  • [5] Faraday M., 1831, PHIL T R SOC LOND, V121, P299, DOI [10.1098/rstl.1831.0018, DOI 10.1098/RSTL.1831.0018]
  • [6] Lamb H., 1931, HYDRODYNAMICS, P708
  • [7] LANDAU LD, 1975, HYDRODYNAMIK
  • [8] ORDER-DISORDER TRANSITION IN CAPILLARY RIPPLES
    TUFILLARO, NB
    RAMSHANKAR, R
    GOLLUB, JP
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (04) : 422 - 425