LOGICAL REFORMULATION OF QUANTUM-MECHANICS .1. FOUNDATIONS

被引:293
作者
OMNES, R
机构
关键词
D O I
10.1007/BF01014230
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:893 / 932
页数:40
相关论文
共 36 条
[1]   TIME SYMMETRY IN QUANTUM PROCESS OF MEASUREMENT [J].
AHARONOV, Y ;
BERGMANN, PG ;
LEBOWITZ, JL .
PHYSICAL REVIEW B, 1964, 134 (6B) :1410-&
[2]  
Bauer E, 1939, THEORIE OBSERVATION
[3]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[4]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[5]  
BOHM D, 1954, QUANTUM THEORY
[6]  
BOHR N, 1963, ATOMIC PHYSICS HUMAN
[7]  
Cornfeld I. P., 1982, ERGODIC THEORY
[8]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[9]  
DAUBECHIES I, UNPUB
[10]   CONSISTENT HISTORIES AND THE MEASUREMENT PROBLEM [J].
DESPAGNAT, B .
PHYSICS LETTERS A, 1987, 124 (4-5) :204-206