SEMIFLEXIBLE POLYMER IN THE HALF-PLANE AND STATISTICS OF THE INTEGRAL OF A BROWNIAN CURVE

被引:97
作者
BURKHARDT, TW [1 ]
机构
[1] TEMPLE UNIV, DEPT PHYS, PHILADELPHIA, PA 19122 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 22期
关键词
D O I
10.1088/0305-4470/26/22/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A continuum model of a polymer with non-zero bending energy, fluctuating without overhangs in the half plane, is considered. The exact partition function is obtained from the Marshall-Watson solution of the Klein-Kramers equation for Brownian motion in the half space. The partition function contains information on probabilities associated with the integral of a Brownian curve and reproduces Sinai's t(-5/4) result for the asymptotic first passage time density. The t(-5/2) dependence of a different passage probability implies a first-order polymer adsorption transition for short-range pinning potentials.
引用
收藏
页码:L1157 / L1162
页数:6
相关论文
共 15 条