COMPOSITE METHODS FOR NUMERICAL-SOLUTION OF STIFF SYSTEMS OF ODES

被引:5
作者
ISERLES, A
机构
关键词
D O I
10.1137/0721025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The author considers methods which consist of sequential application of several different schemes for stiff ordinary differential systems, with a predetermined ratio of step-lengths. It is shown that, under some conditions, such composite methods have higher order and better stability than the constituent schemes. Compositions of Obrechkoff methods and of implicit Runge-Kutta processes are investigated.
引用
收藏
页码:340 / 351
页数:12
相关论文
共 22 条
[1]   DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR STIFF ODES [J].
ALEXANDER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (06) :1006-1021
[2]  
[Anonymous], 1963, J AUSTR MATH SOC, DOI [DOI 10.1017/S1446788700027932, 10.1017/S1446788700027932]
[3]  
Burrage K., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P22, DOI 10.1007/BF01947741
[4]   IMPLICIT RUNGE-KUTTA PROCESSES [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1964, 18 (85) :50-&
[5]  
Chipman F, 1971, BIT, V11, P384
[6]  
Ehle B.L., 1969, CSRR2010 U WAT DEP A
[7]  
Gear CW., 1971, PRENTICE HALL SERIES
[8]  
ISERLES A, 1981, MATH COMPUT, V36, P171, DOI 10.1090/S0025-5718-1981-0595049-9
[9]  
ISERLES A, 1982, MATH COMPUT, V38, P99, DOI 10.1090/S0025-5718-1982-0637289-7
[10]  
Iserles A., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P157, DOI 10.1007/BF01931692