BOUNDEDNESS OF PRIME PERIODS OF STABLE CYCLES AND CONVERGENCE TO FIXED-POINTS IN DISCRETE MONOTONE DYNAMICAL-SYSTEMS

被引:26
作者
HESS, P
POLACIK, P
机构
[1] COMENIUS UNIV BRATISLAVA, INST APPL MATH, MLYNSKA DOLINA, CS-84215 BRATISLAVA, CZECHOSLOVAKIA
[2] UNIV ZURICH, INST MATH, CH-8001 ZURICH, SWITZERLAND
关键词
DISCRETE MONOTONE DYNAMICAL SYSTEMS; LINEARLY STABLE CYCLES; LYAPUNOV EXPONENTS; CENTER MANIFOLD THEOREM; KREIN-RUTMAN THEOREM; PERIODIC REACTION-DIFFUSION EQUATIONS; GENERIC CONVERGENCE;
D O I
10.1137/0524075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the boundedness of minimal periods of linearly stable cycles for discrete, strongly order-preserving semigroups (F0n)n is-an-element-of N in bounded subsets of an ordered Banach space is proved. It is further shown that this bound is not increased by small perturbations of F0. Of particular interest is the case where the only linearly stable cycles of F0 are fixed points. Employing a recent result of Polacik and Terescak, the typical convergence of relatively compact orbits and for perturbed systems then follow. The results are applied to classes of time-periodic reaction-diffusion equations and give typical convergence to periodic solutions.
引用
收藏
页码:1312 / 1330
页数:19
相关论文
共 37 条
[1]   ON STABILIZATION OF DISCRETE MONOTONE DYNAMIC-SYSTEMS [J].
ALIKAKOS, ND ;
HESS, P .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 59 (02) :185-194
[2]   DISCRETE ORDER PRESERVING SEMIGROUPS AND STABILITY FOR PERIODIC PARABOLIC DIFFERENTIAL-EQUATIONS [J].
ALIKAKOS, ND ;
HESS, P ;
MATANO, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 82 (02) :322-341
[3]  
ALIKAKOS ND, 1991, DIFFERENTIAL INTEGRA, V4, P15
[4]  
AMANN H, 1985, J REINE ANGEW MATH, V360, P47
[5]  
Amann H., 1978, NONLINEAR ANAL, V1978
[6]   CONVERGENCE IN GENERAL PERIODIC PARABOLIC EQUATIONS IN ONE SPACE DIMENSION [J].
BRUNOVSKY, P ;
POLACIK, P ;
SANDSTEDE, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (03) :209-215
[7]   CK CENTER UNSTABLE MANIFOLDS [J].
CHOW, SN ;
LU, KN .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 :303-320
[8]  
DANCER EN, 1991, J REINE ANGEW MATH, V419, P125
[9]  
Hale J. K., 1977, THEORY FUNCTIONAL DI, P36, DOI [10.1007/978-1-4612-9892-2_3, DOI 10.1007/978-1-4612-9892-2_3]
[10]  
Henry D., 1981, GEOMETRIC THEORY SEM, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]