LARGE ROTATIONS REVISITED APPLICATION OF LIE-ALGEBRA

被引:27
作者
ARGYRIS, J [1 ]
POTERASU, VF [1 ]
机构
[1] INST POLYTECH GHEORGHE ASACHI,DEPT THEORET MECH,IASI,ROMANIA
关键词
D O I
10.1016/0045-7825(93)90040-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents an elementary introduction and application of Lie algebra to compound groups of large rotations. Following an elementary overview of the foundations of Lie algebra, the authors discuss the rotational groups JO(3) and the exponential form of the rotation matrix. These yield a practical link between the elegance of Lie group theory and engineering kinematics. Some illustrative examples, as the standard Stanford manipulator, indicate interesting possibilities on enlarged applications concerning robotic mechanisms, vehicles and biosystems.
引用
收藏
页码:11 / 42
页数:32
相关论文
共 14 条
[1]   AN EXCURSION INTO LARGE ROTATIONS [J].
ARGYRIS, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :85-&
[2]   FINITE-ELEMENT METHOD - NATURAL APPROACH [J].
ARGYRIS, JH ;
BALMER, H ;
DOLTSINIS, JS ;
DUNNE, PC ;
HAASE, M ;
KLEIBER, M ;
MALEJANNAKIS, GA ;
MLEJNEK, HP ;
MULLER, M ;
SCHARPF, DW .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1979, 17-8 (JAN) :1-106
[3]  
Chen J. Q., 1989, GROUP REPRESENTATION
[4]   ON HOMOGENEOUS TRANSFORMS, QUATERNIONS, AND COMPUTATIONAL-EFFICIENCY [J].
FUNDA, J ;
TAYLOR, RH ;
PAUL, RP .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1990, 6 (03) :382-388
[5]  
GILMORE R, 1984, LIE GROUPS LIE ALGEB
[6]   GLOBAL TRANSFORMATIONS OF NON-LINEAR SYSTEMS [J].
HUNT, LR ;
SU, R ;
MEYER, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (01) :24-31
[7]  
Jacobson N., 1962, LIE ALGEBRAS
[8]  
Karger A., 1985, SPACE KINEMATICS LIE
[9]  
MARTINEZ JMR, 1992, MECH MACH THEORY, V27, P451
[10]  
Normand J-M., 1980, LIE GROUP ROTATIONS