UNIFIED RENORMALIZATION-GROUP APPROACH TO THE THERMODYNAMIC AND GROUND-STATE PROPERTIES OF QUANTUM-LATTICE SYSTEMS

被引:28
作者
STELLA, AL
VANDERZANDE, C
DEKEYSER, R
机构
[1] UNIV PADUA, CNR, UNITA GRP NAZL STRUTT MAT, I-35100 PADUA, ITALY
[2] KATHOLIEKE UNIV LEUVEN, INST THEORET FYS, B-3030 LEUVEN, BELGIUM
关键词
D O I
10.1103/PhysRevB.27.1812
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:1812 / 1831
页数:20
相关论文
共 37 条
[1]   RENORMALIZATION GROUP METHOD FOR QUANTUM-MECHANICAL SYSTEMS .1. S= 1-2XY MODEL ON SQUARE LATTICE [J].
BETTS, DD ;
PLISCHKE, M .
CANADIAN JOURNAL OF PHYSICS, 1976, 54 (15) :1553-1563
[2]  
BONNER JC, 1964, PHYS REV A, V135, P640
[3]   RENORMALIZATION TRANSFORMATIONS FOR QUANTUM SPIN SYSTEMS [J].
BROWER, RC ;
KUTTNER, F ;
NAUENBERG, M ;
SUBBARAO, K .
PHYSICAL REVIEW LETTERS, 1977, 38 (22) :1231-1234
[4]   RENORMALIZATION TECHNIQUES FOR QUANTUM SPIN SYSTEMS - GROUND-STATE ENERGIES [J].
CASPERS, WJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1980, 63 (04) :223-263
[5]   REAL-SPACE RENORMALIZATION-GROUP STUDY OF THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
DASGUPTA, C ;
PFEUTY, P .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (05) :717-735
[6]   POSSIBLE TEMPERATURE MARGINALITY IN THE 2-DIMENSIONAL S=1/2 XY MODEL BY A LINEAR RENORMALIZATION TRANSFORMATION [J].
DEKEYSER, R ;
REYNAERT, M ;
STELLA, AL ;
TOIGO, F .
PHYSICAL REVIEW B, 1978, 18 (07) :3486-3490
[7]  
DEKEYSER R, 1978, J PHYSIQUE C S, V6, P747
[8]   QUANTUM FIELD-THEORIES ON A LATTICE - VARIATIONAL METHODS FOR ARBITRARY COUPLING STRENGTHS AND ISING-MODEL IN A TRANSVERSE MAGNETIC-FIELD [J].
DRELL, SD ;
WEINSTEIN, M ;
YANKIELOWICZ, S .
PHYSICAL REVIEW D, 1977, 16 (06) :1769-1781
[9]   STRONG-COUPLING FIELD-THEORY .1. VARIATIONAL APPROACH TO PHI-4 THEORY [J].
DRELL, SD ;
WEINSTEIN, M ;
YANKIELOWICZ, S .
PHYSICAL REVIEW D, 1976, 14 (02) :487-516
[10]   CRITICAL EXPONENTS FOR 3-DIMENSIONAL ISING-MODEL FROM REAL-SPACE RENORMALIZATION GROUP IN 2 DIMENSIONS [J].
FRIEDMAN, Z .
PHYSICAL REVIEW LETTERS, 1976, 36 (22) :1326-1328