SMOOTH BOSONIZATION - THE CHESHIRE CAT REVISITED

被引:47
作者
DAMGAARD, PH [1 ]
NIELSEN, HB [1 ]
SOLLACHER, R [1 ]
机构
[1] NIELS BOHR INST,DK-2100 COPENHAGEN,DENMARK
关键词
D O I
10.1016/0550-3213(92)90100-P
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A general method for deriving effective lagrangians is used to establish a continuous bosonization of a fermionic theory. This is achieved by introducing new fields in the path integral, and choosing different gauges in an equivalent version of the theory containing also a bosonic field. We illustrate this idea by showing the equivalence of fermions and bosons in (1 + 1) dimensions. We also demonstrate a smooth transition in space from a bosonic to a fermionic representation, providing a new class of soft Cheshire cat bag models, as well as a smooth transition in momentum space introducing effective low- and high-energy fields.
引用
收藏
页码:227 / 250
页数:24
相关论文
共 23 条
[1]  
ABDALLA E, 1985, NUCL PHYS B, V225, P392
[2]   FIELD TRANSFORMATIONS, COLLECTIVE COORDINATES AND BRST INVARIANCE [J].
ALFARO, J ;
DAMGAARD, PH .
ANNALS OF PHYSICS, 1990, 202 (02) :398-435
[3]  
Ball R. D., 1989, Physics Reports, V182, P1, DOI 10.1016/0370-1573(89)90027-6
[4]   PATH-INTEGRAL BOSONIZATION FOR MASSIVE FERMION MODELS IN 2 DIMENSIONS [J].
BOTELHO, LCL .
PHYSICAL REVIEW D, 1986, 33 (04) :1195-1198
[5]   QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1975, 11 (08) :2088-2097
[6]  
DAMGAARD PH, IN PRESS PHYS LETT B
[7]   THE WESS-ZUMINO ACTION IN 2 DIMENSIONS AND NON-ABELIAN BOSONIZATION [J].
DIVECCHIA, P ;
DURHUUS, B ;
PETERSEN, JL .
PHYSICS LETTERS B, 1984, 144 (3-4) :245-249
[8]   PATH INTEGRAL BOSONIZATION OF MASSIVE TWO-DIMENSIONAL FERMIONS [J].
DORN, H .
PHYSICS LETTERS B, 1986, 167 (01) :86-90
[9]   CONSERVATION-LAWS AND BOSONIZATION [J].
FRISHMAN, Y .
PHYSICS LETTERS B, 1984, 146 (3-4) :204-206
[10]   PATH-INTEGRAL FORMULATION OF CHIRAL INVARIANT FERMION MODELS IN 2 DIMENSIONS [J].
FURUYA, K ;
SARAVI, REG ;
SCHAPOSNIK, FA .
NUCLEAR PHYSICS B, 1982, 208 (01) :159-181