TURBULENCE IN MULTISTEP METHODS FOR INITIAL-VALUE PROBLEMS

被引:39
作者
PRUFER, M
机构
[1] Univ Bremen, Bremen, West Ger, Univ Bremen, Bremen, West Ger
关键词
D O I
10.1137/0145002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solving a scalar initial value problem with a numerical k-step scheme amounts to iterating a k-dimensional discrete dynamical system. In this paper the author investigates regular and chaotic behavior of some dynamical systems associated with Adams-Bashforth formulas applied to a simple nonlinear test equation.
引用
收藏
页码:32 / 69
页数:38
相关论文
共 37 条
[1]  
ARONSON DG, 1982, COMM MATH PHYS, V83, P355
[2]  
BREZZI F, 1984, NUMERICAL METHODS BI, P79
[3]  
Collet P., 1980, ITERATED MAPS INTERV
[4]  
ECKMANN JP, UGVADPT198104290 U G
[5]  
FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2
[6]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[7]   CHARACTERISTIC EXPONENTS AND STRANGE ATTRACTORS [J].
FEIT, SD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (03) :249-260
[8]   THE LIAPUNOV DIMENSION OF STRANGE ATTRACTORS [J].
FREDERICKSON, P ;
KAPLAN, JL ;
YORKE, ED ;
YORKE, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 49 (02) :185-207
[9]  
GREBOGI C, ORDER IN CHAOS, P181
[10]  
HELLEMAN RHG, 1980, FUNDAMENTAL PROBLEMS, V5, P165