SIMULATION OF CHARGE-MUTANT ACETYLCHOLINESTERASES

被引:57
作者
ANTOSIEWICZ, J
MCCAMMON, JA
WLODEK, ST
GILSON, MK
机构
[1] UNIV CALIF SAN DIEGO,DEPT PHARMACOL,LA JOLLA,CA 92093
[2] UNIV HOUSTON,DEPT CHEM,HOUSTON,TX 77204
[3] NIST,CTR ADV RES BIOTECHNOL,ROCKVILLE,MD 20850
关键词
D O I
10.1021/bi00013a009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A recent experimental study of human acetylcholinesterase has shown that the mutation of surface acidic residues has little effect on the rate constant for hydrolysis of acetylthiocholine. It was concluded, on this basis, that the reaction is not diffusion controlled and that electrostatic steering plays only a minor role in determining the rate. Here we examine this issue through Brownian dynamics simulations on Torpedo californica acetylcholinesterase in which the surface acidic residues homologous with those mutated in the human enzyme are artifically neutralized. The computed effects of the mutations on the rate constants reproduce quite well the modest effects of the mutations upon the measured encounter rates. Nonetheless, the electrostatic field of the enzyme is found to increase the rate constants by about an order of magnitude in both the wild type and the mutants. We therefore conclude that the mutation experiments do not disprove that electrostatic steering substantially affects the catalytic rate of acetylcholinesterase.
引用
收藏
页码:4211 / 4219
页数:9
相关论文
共 30 条
  • [1] Allison S.A., Ganti G., McCammon J.A., Biopolymers, 27, pp. 251-269, (1985)
  • [2] Allison S.A., Bacquet R.J., McCammon J.A., Biopolymers, 28, pp. 10072-10078, (1989)
  • [3] Antosiewicz J., Porschke D., Biochemistry, 34, pp. 151-158, (1989)
  • [4] Antosiewicz J., Gilson M.K., McCammon J.A., Isr. J. Chem., 238, pp. 415-436, (1994)
  • [5] Antosiewicz J., McCammon J.A., Gilson M.K., Biophys. J., 68, pp. 62-68, (1994)
  • [6] Antosiewicz J., Gilson M.K., Lee I., McCammon J.A., Biochemistry, 25, pp. 125-130, (1995)
  • [7] Bazelyansky M., Robey E., Kirsch J.F., Biochemistry, 25, pp. 125-130, (1986)
  • [8] Berman H.A., Leonard K., Nowak M.W., in Cholinesterases: Structure, Function, Mechanism, Genetics and Cell Biology, pp. 229-234, (1991)
  • [9] Bernstein F.C., Koetzle T.F., Williams T.F., Meyer G.J.B., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M., J. Mol. Biol., 112, pp. 535-542, (1977)
  • [10] Cygler M., Schrag J.D., Sussman J.L., Harel M., Silman I., Gentry M.K., Doctor B.P., Protein Sci., 2, pp. 366-382, (1993)