A CONVEX APPROACH TO THE MIXED H-2/H-INFINITY, CONTROL PROBLEM FOR DISCRETE-TIME UNCERTAIN SYSTEMS

被引:27
作者
GEROMEL, JC [1 ]
PERES, PLD [1 ]
SOUZA, SR [1 ]
机构
[1] FED UNIV GOIAS,SCH ELECT ENGN,DEPT ELECTR & SYST,BR-74605220 GOIANIA,GO,BRAZIL
关键词
DISCRETE-TIME SYSTEM; UNCERTAIN SYSTEMS; MIXED H-2/H-INFINITY CONTROL; CONVEX ANALYSIS;
D O I
10.1137/S0363012992238230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers H-2/H-infinity, control problems involving discrete-time uncertain linear systems. The uncertain domain is supposed to be convex bounded, which naturally covers, as a particular case, the important class of interval matrices. The H-infinity guaranteed-cost control problem, solved for this class of uncertain systems, under no matching conditions, can be stated as follows: determine a state feedback gain (if one exists) such that the H-infinity norm of a given transfer function remains bounded by a prespecified level for all possible models. In the same context, problems on the determination of the smallest H-infinity upper bound and the minimization of an H-2 cost upper bound subject to H-infinity constraints are also addressed. The results follow from the fact that those problems are convex in the particular parametric space under consideration. Some examples illustrate the theory.
引用
收藏
页码:1816 / 1833
页数:18
相关论文
共 24 条
[1]   LQG CONTROL WITH AN H-INFINITY PERFORMANCE BOUND - A RICCATI EQUATION APPROACH [J].
BERNSTEIN, DS ;
HADDAD, WM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (03) :293-305
[2]   A LINEAR-PROGRAMMING ORIENTED PROCEDURE FOR QUADRATIC STABILIZATION OF UNCERTAIN SYSTEMS [J].
BERNUSSOU, J ;
PERES, PLD ;
GEROMEL, JC .
SYSTEMS & CONTROL LETTERS, 1989, 13 (01) :65-72
[3]  
BOYD S, 1989, INT J CONTROL, V49, P2215
[4]   H-INFINITY ANALYSIS AND SYNTHESIS OF DISCRETE-TIME-SYSTEMS WITH TIME-VARYING UNCERTAINTY [J].
DESOUZA, CE ;
FU, MY ;
XIE, LH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (03) :459-462
[5]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[6]  
FURUTA K, 1990, 1990 P AM CONTR C SA, P3067
[7]   ON A CONVEX PARAMETER SPACE METHOD FOR LINEAR-CONTROL DESIGN OF UNCERTAIN SYSTEMS [J].
GEROMEL, JC ;
PERES, PLD ;
BERNUSSOU, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) :381-402
[8]   H-INFINITY CONTROL OF DISCRETE-TIME UNCERTAIN SYSTEMS [J].
GEROMEL, JC ;
PERES, PLD ;
SOUZA, SR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (05) :1072-1075
[9]  
GEROMEL JC, 1991, 1ST P IFAC S DES MET, P302
[10]   QUADRATIC STABILIZABILITY OF UNCERTAIN SYSTEMS - A 2 LEVEL OPTIMIZATION SETUP [J].
GU, KQ ;
CHEN, YH ;
ZOHDY, MA ;
LOH, NK .
AUTOMATICA, 1991, 27 (01) :161-165