GLOBAL ERROR ESTIMATION WITH RUNGE-KUTTA METHODS

被引:27
作者
DORMAND, JR
DUCKERS, RR
PRINCE, PJ
机构
[1] TEESSIDE POLYTECH,DEPT MATH & STAT,MIDDLESBROUGH TS1 3BA,CLEVELAND,ENGLAND
[2] TEESSIDE POLYTECH,DEPT COMP SCI,MIDDLESBROUGH TS1 3BA,CLEVELAND,ENGLAND
关键词
Errors - Numerical methods - Ordinary differential equations - Runge Kutta methods;
D O I
10.1093/imanum/4.2.169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An analysis of global error estimation for Runge - Kutta solutions of ordinary differential equations is presented. The basic technique is that of Zadunaisky in which the global error is computed from a numerical solution of a neighbouring problem related to the main problem by some method of interpolation. It is shown that Runge - Kutta formulae which permit valid global error estimation using low-degree interpolation can be developed, thus leading to more accurate and computationally convenient algorithms than was hitherto expected. Some special Runge - Kutta processes up to order 4 are presented together with numerical results. © 1984, by Academic Press Inc. (London) Limited.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 1963, J AUSTR MATH SOC, DOI [DOI 10.1017/S1446788700027932, 10.1017/S1446788700027932]
[2]  
Dormand J. R., 1980, J COMPUT APPL MATH, V6, P19, DOI DOI 10.1016/0771-050X(80)90013-3
[3]   NEW RUNGE-KUTTA ALGORITHMS FOR NUMERICAL-SIMULATION IN DYNAMICAL ASTRONOMY [J].
DORMAND, JR ;
PRINCE, PJ .
CELESTIAL MECHANICS, 1978, 18 (03) :223-232
[4]  
FRANK R, 1975, ISNM, V27, P45
[5]  
GRAGG WB, 1963, THESIS U CALIFORNIA
[6]   COMPARING NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS [J].
HULL, TE ;
ENRIGHT, WH ;
FELLEN, BM ;
SEDGWICK, AE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (04) :603-637
[7]  
Prince PJ., 1981, J COMPUT APPL MATH, V7, P67, DOI DOI 10.1016/0771-050X(81)90010-3
[8]  
PRINCE PJ, 1979, THESIS CNAA
[9]  
PRINCE PJ, 1978, J I MATHS APPLICS, V16, P381
[10]  
Shampine L. F., 1976, ACM Transactions on Mathematical Software, V2, P172, DOI 10.1145/355681.355687