2ND-ORDER CORRECTIONS TO THE GAUSSIAN EFFECTIVE POTENTIAL OF LAMBDA-PHI-4 THEORY

被引:121
作者
STANCU, I
STEVENSON, PM
机构
[1] T. W. Bonner Nuclear Laboratory, Physics Department, Rice University, Houston
来源
PHYSICAL REVIEW D | 1990年 / 42卷 / 08期
关键词
D O I
10.1103/PhysRevD.42.2710
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We formulate a systematic, nonperturbative expansion for the effective potential of 4 theory. At first order it gives the Gaussian effective potential (GEP), which itself contains the one-loop and leading-order 1/N results. Here, we compute the second-order terms and carry out the renormalization in the four-dimensional, precarious case, using dimensional regularization. (Difficulties with other regularizations are briefly discussed.) Remarkably, the final result takes the same mathematical form as the GEP, with only some numerical coefficients being changed. Indeed, in the most natural parametrization, only a single coefficient is changed, from 1 to 1-1/(N+3)2. © 1990 The American Physical Society.
引用
收藏
页码:2710 / 2725
页数:16
相关论文
共 57 条
[1]   THE BACKGROUND FIELD METHOD BEYOND ONE LOOP [J].
ABBOTT, LF .
NUCLEAR PHYSICS B, 1981, 185 (01) :189-203
[2]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[3]  
ALTENBOKUM M, 1987, PHYS REV D, V35, P609
[4]  
ALTENBOKUM M, ILLTH8613 ILL REP
[5]  
ALTENBOKUM M, 1986, PHYS REV D, V33, P3658
[6]  
[Anonymous], 1996, TABLES INTEGRALS SER
[7]   RENORMALIZATION OF TRIAL WAVE FUNCTIONALS USING THE EFFECTIVE POTENTIAL [J].
BARNES, T ;
GHANDOUR, GI .
PHYSICAL REVIEW D, 1980, 22 (04) :924-938
[8]   LOGARITHMIC APPROXIMATIONS TO POLYNOMIAL LAGRANGEANS [J].
BENDER, CM ;
MILTON, KA ;
MOSHE, M ;
PINSKY, SS ;
SIMMONS, LM .
PHYSICAL REVIEW LETTERS, 1987, 58 (25) :2615-2618
[9]   NOVEL PERTURBATIVE SCHEME IN QUANTUM-FIELD THEORY [J].
BENDER, CM ;
MILTON, KA ;
MOSHE, M ;
PINSKY, SS ;
SIMMONS, LM .
PHYSICAL REVIEW D, 1988, 37 (06) :1472-1484
[10]   LAMDA-RHO-4 IN NU-DIMENSIONS [J].
BOLLINI, CG ;
GIAMBIAGI, JJ .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1986, 93 (02) :113-124