COOPERATIVE BINDING OF POLYAMINES INDUCES THE ESCHERICHIA-COLI SINGLE-STRAND BINDING-PROTEIN DNA-BINDING MODE TRANSITIONS

被引:29
作者
WEI, TF [1 ]
BUJALOWSKI, W [1 ]
LOHMAN, TM [1 ]
机构
[1] WASHINGTON UNIV,SCH MED,DEPT BIOCHEM & MOLEC BIOPHYS,POB 8231,660 S EUCLID AVE,ST LOUIS,MO 63110
关键词
D O I
10.1021/bi00141a029
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Escherichia coli single-strand binding (SSB) protein is an essential protein involved in DNA replication, recombination, and repair processes. The tetrameric protein binds to ss nucleic acids in a number of different binding modes in vitro. These modes differ in the number of nucleotides occluded per SSB tetramer and in the type and degree of cooperative complexes that are formed with ss DNA. Although it is not yet known whether only one or all of these modes function in vivo, based on the dramatically different properties of the SSB tetramer in these different ss DNA binding modes, it has been suggested that the different modes may function selectively in replication, recombination, and/or repair. The transitions between these different modes are very sensitive to solution conditions, including salt (concentration, as well as cation and anion type), pH, and temperature. We have examined the effects of multivalent cations, principally the polyamine spermine, on the SSB-ss poly(dT) binding mode transitions and find that the transition from the (SSB)35 to the (SSB)56 binding mode can be induced by micromolar concentrations of polyamines as well as the inorganic cation Co(NH3)63+. Furthermore, these multivalent cations, as well as Mg2+, induce the binding mode transition by binding cooperatively to the SSB-poly(dT) complexes. These observations are interesting in light of the fact that polyamines, such as spermidine, are part of the ionic environment in E. coli and hence these cations are likely to affect the distribution of SSB-ss DNA binding modes in vivo. Furthermore, the ability of the SSB protein to enhance the rate of renaturation of complementary single-stranded DNA >5000-fold is directly dependent upon the presence of polyamines [Christiansen, C., & Baldwin, R. L. (1977) J. Mol. Biol. 115, 441].
引用
收藏
页码:6166 / 6174
页数:9
相关论文
共 43 条
[1]   T4 BACTERIOPHAGE GENE-32 - A STRUCTURAL PROTEIN IN REPLICATION AND RECOMBINATION OF DNA [J].
ALBERTS, BM ;
FREY, L .
NATURE, 1970, 227 (5265) :1313-&
[2]   EQUILIBRIUM DIALYSIS STUDIES OF POLYAMINE BINDING TO DNA [J].
BRAUNLIN, WH ;
STRICK, TJ ;
RECORD, MT .
BIOPOLYMERS, 1982, 21 (07) :1301-1314
[3]   NEGATIVE CO-OPERATIVITY IN ESCHERICHIA-COLI SINGLE-STRAND BINDING PROTEIN-OLIGONUCLEOTIDE INTERACTIONS .2. SALT, TEMPERATURE AND OLIGONUCLEOTIDE LENGTH EFFECTS [J].
BUJALOWSKI, W ;
LOHMAN, TM .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 207 (01) :269-288
[4]  
BUJALOWSKI W, 1988, J BIOL CHEM, V263, P4629
[5]   MONOMERS OF THE ESCHERICHIA-COLI SSB-1 MUTANT PROTEIN BIND SINGLE-STRANDED-DNA [J].
BUJALOWSKI, W ;
LOHMAN, TM .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 217 (01) :63-74
[6]   NEGATIVE CO-OPERATIVITY IN ESCHERICHIA-COLI SINGLE-STRAND BINDING PROTEIN-OLIGONUCLEOTIDE INTERACTIONS .1. EVIDENCE AND A QUANTITATIVE MODEL [J].
BUJALOWSKI, W ;
LOHMAN, TM .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 207 (01) :249-268
[7]   ESCHERICHIA-COLI SINGLE-STRAND BINDING-PROTEIN FORMS MULTIPLE, DISTINCT COMPLEXES WITH SINGLE-STRANDED-DNA [J].
BUJALOWSKI, W ;
LOHMAN, TM .
BIOCHEMISTRY, 1986, 25 (24) :7799-7802
[8]  
BUJALOWSKI W, 1991, J BIOL CHEM, V266, P1616
[9]   LIMITED COOPERATIVITY IN PROTEIN NUCLEIC-ACID INTERACTIONS - A THERMODYNAMIC MODEL FOR THE INTERACTIONS OF ESCHERICHIA-COLI SINGLE-STRAND BINDING-PROTEIN WITH SINGLE-STRANDED NUCLEIC-ACIDS IN THE BEADED, (SSB)65 MODE [J].
BUJALOWSKI, W ;
LOHMAN, TM .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 195 (04) :897-907
[10]   SINGLE-STRANDED-DNA BINDING-PROTEINS REQUIRED FOR DNA-REPLICATION [J].
CHASE, JW ;
WILLIAMS, KR .
ANNUAL REVIEW OF BIOCHEMISTRY, 1986, 55 :103-136