NONPARAMETRIC-INFERENCE FOR GEOMETRIC PROCESSES

被引:39
作者
YEH, L [1 ]
机构
[1] CHINESE UNIV HONG KONG,DEPT STAT,SHA TIN,HONG KONG
关键词
POINT PROCESS; TREND; STOCHASTICALLY MONOTONE PROCESS; RENEWAL PROCESS; LINEAR REGRESSION;
D O I
10.1080/03610929208830899
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A stochastic process {X(n), n = 1,2,...} is a geometric process if there exists a > 0 so that {a(n-1)X(n), n = 1,2,...0} is a renewal process. This is a stochastically monotone process, and can be used for modelling a point process with trend. In this paper, we study the statistical inference for geometric processes by nonparametric methods. Two statistics and a graphical technique are suggested for testing whether a process is a geometric process. Further, we can estimate the parameters a, lambda and sigma-2 of the geometric process by using linear regression method, where lambda and sigma-2 are the mean and variance of X1 respectively.
引用
收藏
页码:2083 / 2105
页数:23
相关论文
共 14 条
[1]  
Andrews DF, 1985, DATA
[2]  
Ascher H, 1984, REPAIRABLE SYSTEMS R
[3]  
ASCHER H, 1969, ANN ASSURANCE SCI, P49
[4]   BAYESIAN OPTIMAL OVERHAUL INTERVAL MODEL FOR WEIBULL RESTORATION PROCESS CASE [J].
BASSIN, WM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (343) :575-578
[5]  
BASSIN WM, 1969, ARMS, P173
[6]  
COX DR, 1966, STATISTICAL ANAL SER
[7]  
DURR AC, 1980, 2ND P INT C REL MAIN, P189
[8]   INTERVALS BETWEEN COAL-MINING DISASTERS [J].
JARRETT, RG .
BIOMETRIKA, 1979, 66 (01) :191-193
[9]   A NOTE ON THE OPTIMAL REPLACEMENT-PROBLEM [J].
LAM, Y .
ADVANCES IN APPLIED PROBABILITY, 1988, 20 (02) :479-482
[10]  
LAM Y, 1992, IN PRESS ACTA MATH A, V8