SOME GENERALIZED NOTIONS OF OBSERVABILITY

被引:11
作者
OZCALDIRAN, K
FOUNTAIN, DW
LEWIS, FL
机构
[1] GEORGIA INST TECHNOL,SCH ELECT ENGN,ATLANTA,GA 30332
[2] UNIV TEXAS ARLINGTON,AUTOMAT & ROBOT RES INST,FT WORTH,TX 76118
关键词
D O I
10.1109/9.256347
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Generalized state-space systems are a more natural way of describing dynamical behavior than standard state-space systems. Such systems exhibit aa much richer observability structure than standard state-space systems. We define three notions of observability for generalized state-space systems. In contrast to previous work, regularity is not assumed. Geometric characterizations of each type of observability, as well as matrix rank tests for each type of observability, are derived.
引用
收藏
页码:856 / 860
页数:5
相关论文
共 30 条
[1]  
Aplevich J.D., 1982, IEEE CONTR SYST MAG, V2, P46
[2]   MINIMAL REPRESENTATIONS OF IMPLICIT LINEAR-SYSTEMS [J].
APLEVICH, JD .
AUTOMATICA, 1985, 21 (03) :259-269
[3]  
ARMENTANO VA, 1984, 23RD P IEEE C DEC CO, P1507
[4]   REMARKS ON CONTROLLABILITY OF IMPLICIT LINEAR DISCRETE-TIME-SYSTEMS [J].
BANASZUK, A ;
KOCIECKI, M ;
PRZYLUSKI, KM .
SYSTEMS & CONTROL LETTERS, 1988, 10 (01) :67-70
[5]   ON HAUTUS-TYPE CONDITIONS FOR CONTROLLABILITY OF IMPLICIT LINEAR DISCRETE-TIME-SYSTEMS [J].
BANASZUK, A ;
KOCIECKI, M ;
PRZYLUSKI, KM .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1989, 8 (03) :289-298
[6]  
BANASZUK A, 1987, SEP P IFAC WORKSH SY, P257
[7]  
BANASZUK A, 1987, 1987 P INT S SING SY, P44
[8]  
BASER U, 1989, OBSERVABILITY REGULA
[9]   ON SINGULAR IMPLICIT LINEAR DYNAMICAL SYSTEM [J].
BERNHARD, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (05) :612-633
[10]  
CHpbe1l S.L., 1980, SINGULAR SYSTEMS DIF