THE KNOT PROBABILITY IN LATTICE POLYGONS

被引:87
作者
VANRENSBURG, EJJ
WHITTINGTON, SG
机构
[1] Dept. of Chem., Toronto Univ., Ont.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 15期
关键词
D O I
10.1088/0305-4470/23/15/028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The incidence of knots in lattice polygons in the face-centred cubic lattice is investigated numerically. The authors generate a sample of polygons using a pivot algorithm and detect knotted polygons by calculating the Alexander polynomial. If p0n( phi ) is the probability that the polygon with n edges is the unknot, then it is known that lim sup n to infinityp0n( phi )1n/=e - varies as (0)<1. They find that varies as ( phi )=(7.6+or-0.9)*10-6. The effect of the solvent quality on p0n( phi ) is considered. The data show that the probability of a polygon being knotted increases rapidly as the quality of the solvent deteriorates.
引用
收藏
页码:3573 / 3590
页数:18
相关论文
共 40 条
[1]  
[Anonymous], [No title captured]
[2]  
Burde G., 1985, KNOTS
[3]   TIGHT KNOTS [J].
DEGENNES, PG .
MACROMOLECULES, 1984, 17 (04) :703-704
[4]  
DESCLOIZEAUX J, 1979, J PHYS-PARIS, V40, P655
[5]   POLYMER CONTRACTION BELOW THE THETA-POINT - A RENORMALIZATION-GROUP DESCRIPTION [J].
DOUGLAS, JF ;
FREED, KF .
MACROMOLECULES, 1985, 18 (12) :2445-2454
[6]   CLASSIFICATION OF KNOT PROJECTIONS [J].
DOWKER, CH ;
THISTLETHWAITE, MB .
TOPOLOGY AND ITS APPLICATIONS, 1983, 16 (01) :19-31
[7]   SELF-AVOIDING RANDOM LOOPS [J].
DUBINS, LE ;
ORLITSKY, A ;
REEDS, JA ;
SHEPP, LA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (06) :1509-1516
[8]   STATISTICAL MECHANICS WITH TOPOLOGICAL CONSTRAINTS .I. [J].
EDWARDS, SF .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 91 (573P) :513-&
[9]  
EDWARDS SF, 1968, J PHYS A, V1, P15
[10]  
ERNST C, 1987, MATH P CAMB PHIL SOC, V22, P303