A NODE-ADDITION MODEL FOR SYMBOLIC FACTORIZATION

被引:11
作者
LAW, KH [1 ]
FENVES, SJ [1 ]
机构
[1] CARNEGIE MELLON UNIV,DEPT CIVIL ENGN,PITTSBURGH,PA 15213
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 1986年 / 12卷 / 01期
关键词
COMPUTER PROGRAMMING - Algorithms;
D O I
10.1145/5960.5963
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A symbolic node-addition model for matrix factorization of symmetric positive definite matrices is described. In this model, the nodes are added onto the filled graph one at a time. The advantage of the node-addition model is its simplicity and flexibility. The model can be immediately incorporated into finite element analysis programs. The model can also be extended to determine modification patterns in the matrix factors due to changes in the original matrix. For a given matrix K( equals LDL**t), the time complexity of the algorithm for constructing the structure of the lower triangular matrix factor L is O( eta (L)) where eta (L) is the number of nonzero entries in L.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 23 条
[1]  
AKIN JE, 1976, MATH FINITE ELEMENTS, V2, P535
[2]  
Bathe K.-J., 2016, FINITE ELEMENT PROCE, V2nd
[3]   NOTE ON AN ELEMENT ORDERING SCHEME [J].
BYKAT, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (01) :194-198
[4]  
EISENSTAT SC, 1977, 112 YAL U DEP COMP S
[5]  
FELIPPA CA, 1975, J COMPUTERS STRUCTUR, V5, P13
[6]   AN OPTIMAL ALGORITHM FOR SYMBOLIC FACTORIZATION OF SYMMETRIC-MATRICES [J].
GEORGE, A ;
LIU, JWH .
SIAM JOURNAL ON COMPUTING, 1980, 9 (03) :583-593
[7]   APPLICATION OF MINIMUM DEGREE ALGORITHM TO FINITE-ELEMENT SYSTEMS [J].
GEORGE, A ;
MCINTYRE, DR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :90-112
[8]   AUTOMATIC NESTED DISSECTION ALGORITHM FOR IRREGULAR FINITE-ELEMENT PROBLEMS [J].
GEORGE, A ;
LIU, JWH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (05) :1053-1069
[9]  
GEORGE A, 1978, CS7830 U WAT RES REP
[10]  
GEORGE A, 1981, COMPUTER SOLUTION LA