WHEN ARE ALL PRIME IDEALS IN AN ORE EXTENSION GOLDIE

被引:23
作者
BELL, AD
机构
关键词
D O I
10.1080/00927878508823250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1743 / 1762
页数:20
相关论文
共 20 条
[1]  
BELL AD, UNPUB J LONDON MATH
[2]   SINGULAR IDEALS OF GROUP RINGS [J].
BROWN, KA .
QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (109) :41-60
[3]   ENDOMORPHISMS, DERIVATIONS, AND POLYNOMIAL RINGS [J].
CAUCHON, G ;
ROBSON, JC .
JOURNAL OF ALGEBRA, 1978, 53 (01) :227-238
[4]  
CHATTERS AW, 1980, RES NOTES MATH, V44
[5]  
GOLDIE A, 1974, J LOND MATH SOC, V9, P337
[6]   NIL RINGS SATISFYING CERTAIN CHAIN CONDITIONS [J].
HERSTEIN, IN ;
SMALL, L .
CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (04) :771-&
[7]   PRIME IDEALS OF ORE EXTENSIONS OVER COMMUTATIVE RINGS .2. [J].
IRVING, RS .
JOURNAL OF ALGEBRA, 1979, 58 (02) :399-423
[8]   PRIME IDEALS OF ORE EXTENSIONS OVER COMMUTATIVE RINGS [J].
IRVING, RS .
JOURNAL OF ALGEBRA, 1979, 56 (02) :315-342
[9]  
JACOBSON N, 1964, C PUBLICATIONS AM MA, V37
[10]   SKEW POLYNOMIAL RINGS OVER ORDERS IN ARTINIAN RINGS [J].
JATEGAONKAR, AV .
JOURNAL OF ALGEBRA, 1972, 21 (01) :51-+