A CLASS OF REGULARIZATION METHODS FOR ILL-POSED PROBLEMS WITH NONEXACT DATA

被引:1
作者
REGINSKA, T [1 ]
机构
[1] POLISH ACAD SCI,INST MATH,PL-00950 WARSAW,POLAND
关键词
D O I
10.1080/01630569208816502
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with approximate methods for solving ill-posed problems with nonselfadjoint bounded linear operators acting in a Hilbert space. The case of nonexact right hand side is considered. A posteriori choice of a method parameter n(delta) depending on the error of data is based on the value of the residuum. The convergence of approximate solution when delta --> 0 is investigated and the parameter n(delta) is estimated. The simple iteration method is considered in more detail.
引用
收藏
页码:601 / 614
页数:14
相关论文
共 5 条
[1]  
Krasnoselskii M.A., 1966, INTEGRAL OPERATORS S
[2]   A CLASS OF REGULARIZATION METHODS FOR ILL POSED PROBLEMS [J].
POKRZYWA, A ;
REGINSKA, T .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1990, 11 (1-2) :119-138
[3]   ASYMPTOTIC REGULARIZATION FOR INTEGRAL-EQUATIONS OF THE 1ST KIND [J].
REGINSKA, T .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (7-8) :719-732
[4]  
VAINIKKO GM, 1990, NUMER MATH, V57, P63
[5]  
VAINIKKO GM, 1986, ITERATION PROCEDURES