ASYMPTOTIC NORMALITY OF NEAREST NEIGHBOR REGRESSION FUNCTION ESTIMATES

被引:65
作者
STUTE, W
机构
关键词
D O I
10.1214/aos/1176346711
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:917 / 926
页数:10
相关论文
共 15 条
[1]   ON THE L1 CONVERGENCE OF KERNEL ESTIMATORS OF REGRESSION-FUNCTIONS WITH APPLICATIONS IN DISCRIMINATION [J].
DEVROYE, LP ;
WAGNER, TJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 51 (01) :15-25
[2]   ASYMPTOTIC MINIMAX CHARACTER OF THE SAMPLE DISTRIBUTION FUNCTION AND OF THE CLASSICAL MULTINOMIAL ESTIMATOR [J].
DVORETZKY, A ;
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (03) :642-669
[3]   LOCAL PROPERTIES OF K-NN REGRESSION ESTIMATES [J].
MACK, YP .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1981, 2 (03) :311-323
[4]  
Moore D. S., 1977, STAT DECISION THEORY, P269
[5]  
Nadaraya, 1964, THEOR PROBAB APPL, V9, P157, DOI DOI 10.1137/1109020
[6]  
Rosenblatt M, 1969, MULTIVARIATE ANALYSI, P25
[7]  
ROYALL RM, 1966, THESIS STANFORD U
[8]   JOINT ASYMPTOTIC DISTRIBUTION OF ESTIMATED REGRESSION FUNCTION AT A FINITE NUMBER OF DISTINCT POINTS [J].
SCHUSTER, EF .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (01) :84-&
[9]  
Sherfling R., 1980, WILEY SERIES PROBABI, DOI 10.1002/9780470316481
[10]  
Stein E. M., 1970, SINGULAR INTEGRAL DI