FACTORIZED SPARSE APPROXIMATE INVERSE PRECONDITIONINGS .1. THEORY

被引:253
作者
KOLOTILINA, LY [1 ]
YEREMIN, AY [1 ]
机构
[1] RUSSIAN ACAD SCI,DEPT NUMER MATH,MOSCOW 117334,RUSSIA
关键词
SPARSE APPROXIMATE INVERSE; PRECONDITIONING; M-MATRICES; H-MATRICES; BLOCK H-MATRICES; CONVERGENT SPLITTINGS;
D O I
10.1137/0614004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers construction and properties of factorized sparse approximate inverse preconditionings well suited for implementation on modern parallel computers. In the symmetric case such preconditionings have the form A --> G(L)AG(L)T, where G(L) is a sparse approximation based on minimizing the Frobenius form \\I - G(L)L(A)\\F to the inverse of the lower triangular Cholesky factor L(A) of A, which is not assumed to be known explicitly. These preconditionings preserve symmetry and/or positive definiteness of the original matrix and, in the case of M-, H-, or block H-matrices, lead to convergent splittings.
引用
收藏
页码:45 / 58
页数:14
相关论文
共 14 条
[1]  
Benson M. W., 1982, UTILITAS MATHEMATICA, V22, P127
[2]  
Berman A, 1979, MATH SCI CLASSICS AP, V9, DOI DOI 10.1137/1.9781611971262
[3]  
DEWILDE P., 1987, NATO ASI SERIES F, P211
[4]  
Forsythe G.E., 1955, P AM MATH SOC, V6, P340
[5]  
Kaporin I. E., 1990, NUMERICAL METHODS SO, P55
[6]  
KOLOTILINA LY, 1989, J SOVIET MATH, V47, P2821
[7]  
KOLOTILINA LY, FACTORIZED SPARSE AP, V2
[8]  
KOLOTILINA LY, 1986, LOMI P886 USSR AC SC
[9]  
KOLOTILINA LY, 1986, SOVIET J NUMER ANAL, V1, P293
[10]  
KOLOTILINA LY, UNPUB FACTORIZED SPA, V3