A GEOMETRIC CRITERION FOR POSITIVE TOPOLOGICAL-ENTROPY

被引:80
作者
BURNS, K [1 ]
WEISS, H [1 ]
机构
[1] PENN STATE UNIV,DEPT MATH,UNIVERSITY PK,PA 16802
关键词
D O I
10.1007/BF02104512
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that a diffeomorphism possessing a homoclinic point with a topological crossing (possibly with infinite order contact) has positive topological entropy, along with an analogous statement for heteroclinic points. We apply these results to study area-preserving perturbations of area-preserving surface diffeomorphisms possessing homoclinic and double heteroclinic connections. In the heteroclinic case, the perturbed map can fail to have positive topological entropy only if the perturbation preserves the double heteroclinic connection or if it creates a homoclinic connection. In the homoclinic case, the perturbed map can fail to have positive topological entropy only if the perturbation preserves the connection. These results significantly simplify the application of the Poincare-Arnold-Melnikov-Sotomayor method. The results apply even when the contraction and expansion at the fixed point is subexponential.
引用
收藏
页码:95 / 118
页数:24
相关论文
共 31 条
[1]  
Arnol&PRIME
[2]  
d V. I., 1964, SOV MATH DOKL, V5, P581
[3]  
BOWEN R, 1977, CBMS LECTURE SERIES, V35
[4]   PATHOLOGY IN DYNAMICAL-SYSTEMS .3. ANALYTIC HAMILTONIANS [J].
CHURCHILL, RC ;
ROD, DL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (01) :23-38
[5]   PATHOLOGY IN DYNAMICAL-SYSTEMS .1. GENERAL THEORY [J].
CHURCHILL, RC ;
ROD, DL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 21 (01) :39-65
[6]  
CHURCHILL RC, 1973, J DIFFER EQUATIONS, V13, P39
[7]  
Conley C., 1968, TOPOLOGICAL DYNAMICS, P129
[8]  
EASTON RW, 1975, J DIFFER EQUATIONS, V17, P23
[9]  
Gantmacher, 1959, THEORY MATRICES, V2
[10]  
Gavrilov N.K., 1973, MATH USSR SB, V19, P139, DOI [10.1070/SM1973v019n01ABEH001741, DOI 10.1070/SM1973V019N01ABEH001741]