ON FRECHET DIFFERENTIABILITY OF SOME NONLINEAR OPERATORS OCCURRING IN INVERSE PROBLEMS - AN IMPLICIT FUNCTION THEOREM APPROACH

被引:16
作者
CONNOLLY, TJ [1 ]
WALL, DJN [1 ]
机构
[1] UNIV CANTERBURY,DEPT MATH,CHRISTCHURCH 1,NEW ZEALAND
关键词
D O I
10.1088/0266-5611/6/6/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The validity of Newton-Kantorovich methods for the computational solution of inverse problems is directly linked to the Frechet differentiability of the appropriate nonlinear operator. This paper illustrates how use of the implicit function theorem can considerably simplify the analysis of Frechet differentiability and regularity properties of this underlying operator. Two widely studied boundary and exterior measurement inverse problems are considered and new regularity results are produced.
引用
收藏
页码:949 / 966
页数:18
相关论文
共 30 条
[1]   INVERSION OF GLOBAL ELECTROMAGNETIC INDUCTION DATA [J].
ANDERSSEN, RS .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1975, 10 (03) :292-298
[2]   NUMERICAL APPLICATIONS OF A FORMALISM FOR GEOPHYSICAL INVERSE PROBLEMS [J].
BACKUS, GE ;
GILBERT, JF .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (1-3) :247-&
[3]   CHANDRASEKHAR TRANSFORMATIONS IMPROVE CONVERGENCE OF COMPUTATIONS OF SCATTERING FROM LINEARLY STRATIFIED MEDIA [J].
BATES, RHT ;
WALL, DJN .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1976, 24 (02) :251-253
[4]   FRECHET DERIVATIVES AND SINGLE SCATTERING-THEORY [J].
BOERNER, DE ;
WEST, GF .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1989, 98 (02) :385-390
[5]  
CHAVENT G, 1973, 3RD P IFAC S
[6]  
COEN S, 1989, J MATH PHYS, V25, P1857
[7]  
COHEN JK, 1977, SIAM J APPL MATH, V2, P784
[8]   THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC-WAVES [J].
COLTON, D .
SIAM REVIEW, 1984, 26 (03) :323-350
[9]  
Colton D., 1980, ANAL THEORY PARTIAL
[10]  
Connolly T. J., 1985, Proceedings of the SPIE - The International Society for Optical Engineering, V558, P30, DOI 10.1117/12.949569