BIFURCATION STRUCTURE OF A 3-SPECIES FOOD-CHAIN MODEL

被引:135
作者
MCCANN, K
YODZIS, P
机构
[1] Department of Zoology, University of Guelph, Guelph, ON
关键词
D O I
10.1006/tpbi.1995.1023
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A three-species food chain model utilizing type II functional responses and allometric relationships is analyzed mathematically. A reduction of the two-dimensional nullsurfaces to a set of one-dimensional curves allows for an intuitive understanding of the equilibria structure. With the reduction in hand, we then perform a local bifurcation analysis around an organizing center and categorize the entire parameter space into twelve different regions of dynamic behaviour. These regions in parameter space are characterized by an extremely rich set of dynamical behaviours, including multiple domains of attraction, quasi-periodicity, chaos, homoclinic events, and transient chaos. From this mathematical analysis it is possible to qualify the type of population dynamics under any given parameter set. (C) 1995 Academic Press, Inc.
引用
收藏
页码:93 / 125
页数:33
相关论文
共 42 条
[1]  
ABRAHAM RH, 1986, PHYSICA D, V7, P181
[3]  
ANFOSSI D, 1991, THESIS U GUELPH
[4]  
[Anonymous], 1972, STRUCTURAL STABILITY
[5]  
Arnold VI., 1965, AM MATH SOC TRANSL, V46, P213, DOI [10.1090/trans2/046/11, DOI 10.1090/TRANS2/046/11]
[6]   MATHEMATICAL-ANALYSIS OF SOME 3-SPECIES FOOD-CHAIN MODELS [J].
FREEDMAN, HI ;
WALTMAN, P .
MATHEMATICAL BIOSCIENCES, 1977, 33 (3-4) :257-276
[7]   GLOBAL STABILITY AND PERSISTENCE OF SIMPLE FOOD-CHAINS [J].
FREEDMAN, HI ;
SO, JWH .
MATHEMATICAL BIOSCIENCES, 1985, 76 (01) :69-86
[8]  
FREEDMAN HI, 1983, MATH BIOSCI, V68, P213
[9]   PERSISTENCE IN FOOD WEBS - HOLLING-TYPE FOOD-CHAINS [J].
GARD, TC .
MATHEMATICAL BIOSCIENCES, 1980, 49 (1-2) :61-67
[10]  
GARDINI L, 1989, J THEOR BIOL, V145, P291