THE ITERATED KALMAN FILTER UPDATE AS A GAUSS-NEWTON METHOD

被引:334
作者
BELL, BM [1 ]
CATHEY, FW [1 ]
机构
[1] BOEING DEF & SPACE GRP,AVION TECHNOL,SEATTLE,WA 98124
关键词
D O I
10.1109/9.250476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that the iterated Kalman filter (IKF) update is an application of the Gauss-Newton method for approximating a maximum likelihood estimate. We also present an example in which the iterated Kalman filter update and maximum likelihood estimate show correct convergence behavior as the observation becomes more accurate, whereas the extended Kalman filter update does not.
引用
收藏
页码:294 / 297
页数:4
相关论文
共 6 条
  • [1] DENNIS JE, 1983, NUMERICAL METHODS UN
  • [2] GELB A, 1974, APPL OPTIMAL ESTIMAT, P190
  • [3] RAO CR, 1973, LINEAR STATISTICAL I
  • [4] SCHWEPPE FC, 1973, UNCERTAIN DYNAMIC SY, P343
  • [5] SORENSON HW, 1966, KALMAN FILTERING THE, P90
  • [6] A COMPARISON OF 3 NON-LINEAR FILTERS
    WISHNER, RP
    TABACZYNSKI, JA
    ATHANS, M
    [J]. AUTOMATICA, 1969, 5 (04) : 487 - +