QUASI-LANDAU-LEVEL STRUCTURE IN THE FRACTIONAL QUANTUM HALL-EFFECT

被引:10
作者
REJAEI, B
机构
[1] Instituut-Lorentz, University of Leiden, 2300 RA Leiden
来源
PHYSICAL REVIEW B | 1993年 / 48卷 / 24期
关键词
D O I
10.1103/PhysRevB.48.18016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is argued that a short-range interaction induces a quasi-landau-level structure in the filling-factor dependence of the ground-state energy of electrons in the-lowest Landau level. The discussion is based on exact numerical results obtained from small-system calculations, and the adiabatic principle of Greiter and Wilczek. It is shown that by attaching a single negative flux quantum to each electron adiabatically, the noninteracting electron ground states occupying higher Landau levels are smoothly transformed into the ground states of a hard-core boson gas in the lowest Landau level. This implies a close correspondence between the noninteracting fermions and the hard-core bosons in the lowest Landau level. Numerical results suggest the possibility of a smooth transition from hard-core bosons to fermions with a short-range interaction, by continuously varying the interaction potential.
引用
收藏
页码:18016 / 18023
页数:8
相关论文
共 14 条
[1]   BAND-STRUCTURE OF THE FRACTIONAL QUANTUM HALL-EFFECT [J].
DEV, G ;
JAIN, JK .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2843-2846
[2]   EXACTLY SOLUBLE MODEL OF FRACTIONAL STATISTICS [J].
GIRVIN, SM ;
MACDONALD, AH ;
FISHER, MPA ;
REY, SJ ;
SETHNA, JP .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1671-1674
[3]   EXACT-SOLUTIONS AND THE ADIABATIC HEURISTIC FOR QUANTUM HALL STATES [J].
GREITER, M ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1992, 370 (03) :577-600
[4]  
GREITER M, 1992, NUCL PHYS B, V370, P601
[5]   HEURISTIC PRINCIPLE FOR QUANTIZED HALL STATES [J].
Greiter, Martin ;
Wilczek, Frank .
MODERN PHYSICS LETTERS B, 1990, 4 (16) :1063-1069
[7]   STATISTICS OF QUASIPARTICLES AND THE HIERARCHY OF FRACTIONAL QUANTIZED HALL STATES [J].
HALPERIN, BI .
PHYSICAL REVIEW LETTERS, 1984, 52 (18) :1583-1586
[8]   SOLITON-SOLUTIONS TO THE GAUGED NONLINEAR SCHRODINGER-EQUATION ON THE PLANE [J].
JACKIW, R ;
PI, SY .
PHYSICAL REVIEW LETTERS, 1990, 64 (25) :2969-2972
[9]   COMPOSITE-FERMION APPROACH FOR THE FRACTIONAL QUANTUM HALL-EFFECT [J].
JAIN, JK .
PHYSICAL REVIEW LETTERS, 1989, 63 (02) :199-202
[10]   MICROSCOPIC THEORY OF THE FRACTIONAL QUANTUM HALL-EFFECT [J].
JAIN, JK .
ADVANCES IN PHYSICS, 1992, 41 (02) :105-146