STABILITY OF ACYCLIC MULTICLASS QUEUING-NETWORKS

被引:10
作者
DOWN, D
MEYN, SP
机构
[1] Coordinated Science Laboratory, University of Illinois, Urbana
关键词
D O I
10.1109/9.384230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note we study multiclass queueing networks with fluid arrival streams and service processes. Assuming that the arrival rate does not exceed the network capacity, we deduce stability of the network using the tools of ergodic theory. We show that the distributions of the process converge to a unique steady state value and that convergence takes place at a geometric rate under appropriate moment conditions.
引用
收藏
页码:916 / 919
页数:4
相关论文
共 25 条
[1]  
[Anonymous], 1994, MARKOV CHAINS STOCHA
[2]   MESURE INVARIANTE SUR LES CLASSES RECURRENTES DES PROCESSUS DE MARKOV [J].
AZEMA, J ;
KAPLANDU.M ;
REVUZ, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 8 (03) :157-&
[3]  
BACCELLI F, 1995, IN PRESS QUESTA
[4]  
Borovkov A.A., 1992, SIBERIAN ADV MATH, V2, P16
[5]   ERGODICITY OF A POLLING NETWORK [J].
BOROVKOV, AA ;
SCHASSBERGER, R .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 50 (02) :253-262
[6]  
Cheng-Shang Chang, 1994, Queueing Systems Theory and Applications, V15, P239, DOI 10.1007/BF01189239
[7]   A CALCULUS FOR NETWORK DELAY .2. NETWORK ANALYSIS [J].
CRUZ, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (01) :132-141
[8]   A CALCULUS FOR NETWORK DELAY .1. NETWORK ELEMENTS IN ISOLATION [J].
CRUZ, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (01) :114-131
[9]   ON POSITIVE HARRIS RECURRENCE OF MULTICLASS QUEUEING NETWORKS: A UNIFIED APPROACH VIA FLUID LIMIT MODELS [J].
Dai, J. G. .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (01) :49-77
[10]  
Davis M.H.A., 1993, MARKOV MODELS OPTIMI, V49, DOI DOI 10.1201/9780203748039