LIGHT TRAFFIC DERIVATIVES VIA LIKELIHOOD RATIOS

被引:11
作者
REIMAN, MI
WEISS, A
机构
关键词
D O I
10.1109/18.30987
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:648 / 654
页数:7
相关论文
共 13 条
[1]  
BICKEL PJ, 1977, MATH STATISTICS
[2]   AN ASYMPTOTIC ANALYSIS OF A QUEUING SYSTEM WITH MARKOV-MODULATED ARRIVALS [J].
BURMAN, DY ;
SMITH, DR .
OPERATIONS RESEARCH, 1986, 34 (01) :105-119
[3]  
Cinlar E, 2013, INTRO STOCHASTIC PRO
[4]  
Cooper Robert B., 1981, INTRO QUEUEING THEOR
[5]   SIMULATING STABLE STOCHASTIC SYSTEMS .3. REGENERATIVE PROCESSES AND DISCRETE-EVENT SIMULATIONS [J].
CRANE, MA ;
IGLEHART, DL .
OPERATIONS RESEARCH, 1975, 23 (01) :33-45
[6]   EXISTENCE OF LIMITS IN REGENERATIVE PROCESSES [J].
MILLER, DR .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (04) :1275-&
[7]   VERSATILE MARKOVIAN POINT PROCESS [J].
NEUTS, MF .
JOURNAL OF APPLIED PROBABILITY, 1979, 16 (04) :764-779
[8]  
Neuts MF., 1981, MATRIX GEOMETRIC SOL
[9]   OPEN QUEUING-SYSTEMS IN LIGHT TRAFFIC [J].
REIMAN, MI ;
SIMON, B .
MATHEMATICS OF OPERATIONS RESEARCH, 1989, 14 (01) :26-59
[10]   AN INTERPOLATION APPROXIMATION FOR QUEUING-SYSTEMS WITH POISSON INPUT [J].
REIMAN, MI ;
SIMON, B .
OPERATIONS RESEARCH, 1988, 36 (03) :454-469