COMPARING NONPARAMETRIC VERSUS PARAMETRIC REGRESSION FITS

被引:770
作者
HARDLE, W [1 ]
MAMMEN, E [1 ]
机构
[1] HUMBOLDT UNIV BERLIN,INST STOCHAST,FB MATH,D-10099 BERLIN,GERMANY
关键词
KERNEL ESTIMATE; BOOTSTRAP; WILD BOOTSTRAP; GOODNESS-OF-FIT TEST;
D O I
10.1214/aos/1176349403
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In general, there will be visible differences between a parametric and a nonparametric curve estimate. It is therefore quite natural to compare these in order to decide whether the parametric model could be justified. An asymptotic quantification is the distribution of the integrated squared difference between these curves. We show that the standard way of boot-strapping this statistic fails. We use and analyse a different form of bootstrapping for this task. We call this method the wild bootstrap and apply it to fitting Engel curves in expenditure data analysis.
引用
收藏
页码:1926 / 1947
页数:22
相关论文
共 39 条