SPECTRAL METHODS FOR LINEAR INVERSE PROBLEMS WITH UNBOUNDED OPERATORS

被引:21
作者
GROETSCH, CW
机构
[1] Department of Mathematical Sciences, University of Cincinnati, Cincinnati
关键词
D O I
10.1016/0021-9045(92)90053-Q
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Spectral theory for bounded linear operators is used to develop a general class of approximation methods for the Moore-Penrose generalized inverse of a closed, densely defined linear operator. Issues of convergence and stability are addressed and the methods are modified to provide a stable class of methods for evaluation of unbounded linear operators. © 1992.
引用
收藏
页码:16 / 28
页数:13
相关论文
共 17 条
[1]  
Baumeister J., 1987, STABLE SOLUTION INVE
[2]   A POSTERIORI PARAMETER CHOICE FOR GENERAL REGULARIZATION METHODS FOR SOLVING LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
GFRERER, H .
APPLIED NUMERICAL MATHEMATICS, 1988, 4 (05) :395-417
[3]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[4]   REGULARIZATION OF III-POSED PROBLEMS - OPTIMAL PARAMETER CHOICE IN FINITE DIMENSIONS [J].
GROETSCH, CW ;
NEUBAUER, A .
JOURNAL OF APPROXIMATION THEORY, 1989, 58 (02) :184-200
[5]  
Hestenes M. R., 1961, PAC J MATH, V11, P1315
[6]  
HOFMANN B, 1986, REGULARIZATION APPLI
[7]   SHOOTING ALGORITHM FOR BEST LEAST-SQUARES SOLUTION OF 2-POINT BOUNDARY-VALUE PROBLEMS [J].
LANGFORD, WF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (03) :527-542
[8]  
LARDY JL, 1975, ATTI ACCAD N S F M N, V58, P152
[9]  
Lattes R, 1969, METHOD QUASIREVERSIB
[10]  
Louis A. K., 1989, INVERSE SCHLECHT GES